本期特刊专门介绍金纳米粒子 (Au NPs);这是一种在(电)催化、电子、传感、纳米生物技术、诊断和治疗等领域具有广泛应用的先进材料。为了满足特定应用的要求,可以轻松合成具有各种尺寸、形状和表面功能的 Au NPs。由于可见光范围内的表面等离子体共振 (SPR) 效应,它们具有独特的尺寸和形状相关光学特性,例如电磁波近红外 (IR) 光谱中的光吸收。这些特性使它们适用于基于 SPR 的生物传感器设备、表面增强拉曼散射研究 (SERS) 和生物医学应用,例如光动力疗法,其中光吸收会导致局部散热,可用于杀死癌细胞。欢迎提交全文、通讯和评论。
摘要 癌症是二十一世纪最具破坏性的疾病之一,引起了医学界和学术界的极大关注。为了在抗击癌症的斗争中取得胜利,目前正在研究多种治疗方式。纳米技术已成为一个重要的科学研究领域,具有跨学科应用的潜在应用。它借鉴了化学、物理学、材料科学、工程学、生物学和健康科学等一系列学科的见解。近年来,纳米技术在医学领域的应用显着增加,目的是预防和治疗人体内的疾病。在过去的二十年里,氧化锰纳米材料 (MnONs) 及其衍生物在生物成像、生物传感、药物/基因传递和肿瘤治疗中的应用引起了越来越多的关注。这是因为这些材料具有可调节的结构/形态、独特的物理/化学性质和出色的生物安全性。使用原材料、蔬菜和水果、植物提取物、微生物和真菌绿色合成 MnNPs 具有多种优势,包括无毒、环保、清洁和成本效益。鉴于其作用机制的多样性,绿色生产的 MnNPs 代表了新型抗炎和抗氧化化合物的有希望的来源。已证明 MnNPs 通过激活凋亡信号转导途径或抑制血管生成信号传导,对一系列癌细胞(包括结肠、肝脏、宫颈、乳腺癌、黑色素瘤和前列腺癌细胞)发挥抗增殖活性。在癌症治疗方面,正在研究金属纳米疗法的潜力,包括使用 MnO NPs。MnO 增强的组织渗透和保留特性促进了其作为药物载体的功能。MnONPs 已被提出表现出酶样活性,包括过氧化物酶、过氧化氢酶、氧化酶、谷胱甘肽过氧化物酶和超氧化物歧化酶。通过绿色合成获得的生物相容性表明其不仅可用于特定癌症病症,还可用于其他类型的癌症,而且没有与这些化合物相关的毒性风险。可以想象,这些治疗策略不仅对上述癌症病例有益,而且对其他增殖性疾病病例也有益。通过绿色合成获得的生物相容性证明这些化合物的毒性风险较低,这表明它们在一系列生物医学应用中具有潜在用途。关键词:绿色合成、癌症、氧化锰纳米粒子、纳米生物技术。
1 美国宾夕法尼亚州费城宾夕法尼亚大学工程与应用科学学院生物工程系,2 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院系统药理学和转化治疗学系,3 美国加利福尼亚州萨克拉门托加利福尼亚大学戴维斯分校神经病学和神经外科系,4 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院神经外科系,5 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院医学系、肺部过敏和重症监护科,6 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院神经病学系
a 澳大利亚墨尔本大学化学学院激子科学卓越研究中心,帕克维尔,VIC 3010,澳大利亚;b 比利时鲁汶大学化学系分子成像与光子学,Celestijnenlaan 200F,3001 Heverlee;c 北海道大学电子科学研究所 (Ries),日本北海道札幌市北区 N20W10,001-0020;d 马克斯普朗克聚合物研究所,美因茨,D-55128,德国 * 通讯地址:susana.rocha@kuleuven.be,james.hutchison@unimelb.edu.au 摘要:尽管取得了重大进展,但癌症仍然是全球主要的死亡原因。目前的治疗方法常常由于肿瘤切除不彻底和靶向性不强而失败,这激发了人们对替代疗法的兴趣。高温疗法利用高温杀死癌细胞或增强其对放射/化疗的敏感性,已成为一种有前途的替代疗法。最近的进展是利用纳米粒子 (NP) 作为热介质来选择性破坏癌细胞,从而最大限度地减少对健康组织的损害。这种方法称为 NP 高温疗法,分为两类:光热疗法 (PTT) 和磁热疗法 (MTT)。PTT 利用将光转化为热的 NP,而 MTT 利用由交变磁场 (AMF) 激活的磁性 NP,两者均可实现局部肿瘤损伤。这些方法具有精准靶向、微创和降低全身毒性等优势。然而,NP 高温疗法的疗效取决于许多因素,特别是 NP 特性、肿瘤微环境 (TME) 和 TME-NP 相互作用。优化这种治疗需要准确的热监测策略,例如纳米测温法和生物相关筛选模型,这些模型可以更好地模拟人体肿瘤的生理特征。本综述探讨了 NP 介导癌症热疗的最新进展,讨论了可用的纳米材料、其优缺点、表征方法和未来发展方向。我们特别关注临床前 NP 筛选技术,为其在临床试验过程中的功效和相关性提供最新视角。
摘要:工程纳米粒子在工业和商业中的应用正在增加。人们较少关注其对环境和废水处理系统的负面影响,这些负面影响可能会释放有害的病原体和微生物,威胁人类健康。由于其尺寸和特性,人造纳米粒子很容易进入废水系统并损害处理。本文旨在关注纳米粒子检测的局限性及其对废水处理技术的影响。纳米粒子具有用于废水处理的潜力。凭借其极高的表面积,它可以有效地去除水中的有毒金属离子、致病微生物以及有机和无机溶质。各种纳米材料,如含金属纳米粒子、碳质纳米材料、沸石和树枝状聚合物,已被证明可有效净化水。复合材料是两种或多种合成组装的材料。纳米复合材料对于环境修复至关重要,因为污染是世界上最大的问题之一,也是污水管理的关键。人口增长增加了对清洁水的需求。其中包括陶瓷、金属基聚合物、碳和铁基石墨烯。羧甲基等纳米复合材料可以以令人满意的速率吸附重金属离子和农药。这项研究发现,纳米复合材料有利于修复环境,可以在低收入国家使用。
简单总结:乳腺癌是女性中最常见的癌症,也是癌症相关死亡的主要原因。尽管有几种治疗方法,但全身化疗仍然是主要选择,尤其是对于晚期乳腺癌的治疗。不幸的是,全身化疗会引起许多副作用和对远端器官的损害,并且需要高剂量的药物才能在肿瘤区域达到治疗浓度。使用纳米系统进行药物输送是一种有希望克服这些缺点的策略。在这项研究中,我们开发了含有化疗药物多西他赛的聚(乳酸-乙醇酸)纳米颗粒 (PLGA-NPs),用环状 RGD 三肽功能化,以允许对乳腺癌中过表达的 α v β 3 整合素进行主动靶向。我们证明 PLGA 在临床前模型中有效地将药物输送到乳腺癌细胞,并且比游离多西他赛更有效地阻止肿瘤进展,同时减少副作用。
该研究使用各种技术(如发芽、烹饪、高压灭菌和微波)调查了 60ppm 银纳米粒子 (AgNPs) 对红芸豆的影响。与未处理的生样品相比,用银纳米粒子处理的样品的成分发生了变化,蛋白质、脂肪和碳水化合物含量发生了显著变化。在用银纳米粒子处理的发芽豆中观察到最高的总酚含量 1.59 mg 没食子酸/g、黄酮类化合物含量 445.2 mg 儿茶素和抗氧化活性 89.0%。胰蛋白酶抑制剂含量范围为 0.04 至 2.83 mg/g,在生豆中观察到最高值,在用银纳米粒子处理的发芽豆中观察到最低值。单宁含量从 0.40 到 1.26 mg/g 不等,植酸含量范围从 1.09 到 4.18 mg/g,在 GA 处理的豆中含量最低。生豆中的含量最高。此外,成像分析显示,用 AgNPs 处理过的豆子表面结构发生了明显变化。发芽的豆子显示 AgNPs 粘附或穿透种皮,从而改变了表面形态。煮熟的豆子表面显示 AgNPs 聚集,表明加热后分布发生了变化。微波处理的豆子显示出微波诱导效应,可能由于局部加热导致 AgNPs 分布不均匀和簇形成。高压灭菌会引起豆子的结构变化,AgNPs 与表面相互作用形成聚集体或沉积物。而用 AgNPs 处理豆子会导致 FTIR 光谱图发生变化,例如峰位置或强度发生变化,或者某些波段出现或消失。
基因医学具有巨大潜力,可以精准治疗多种人类疾病的根本原因,但该领域历来因递送这一核心挑战而受阻。纳米粒子是一种与天然病毒大小相同的工程构造,其设计目的是为了更接近地模拟病毒的递送效率,同时具有安全性更高、载货灵活性更高、靶向性更强和制造更简便等优势。非病毒基因转移纳米粒子在临床上取得进展的速度正在加快,FDA 最近批准了多种非病毒核酸递送纳米粒子配方的临床验证,用于表达和沉默基因。虽然大部分进展来自脂质纳米粒子配方,但其他用于基因转移的纳米材料也取得了重大进展,具有生物降解性、可扩展性和细胞靶向性等优点。本综述重点介绍了该领域的现状、目前在递送方面面临的挑战以及工程纳米材料应对这些挑战的机会,包括实现长期治疗性基因编辑。讨论了利用不同类型的纳米材料和不同载体进行基因转移(DNA、mRNA 和核糖核蛋白)的递送技术。介绍了临床应用,包括用于治疗囊性纤维化等遗传疾病。
摘要:超顺磁性氧化铁纳米粒子(SPION)是一种独特的纳米材料,具有卓越的磁性和生物相容性,因此最近引起了研究人员的关注。SPION 在诊断、药物输送、生物传感和生物成像等领域有广泛的应用。通过施加外部磁场来控制这些纳米粒子的能力使它们成为如此广泛应用的完美纳米材料。此外,SPION 具有独特的表面化学性质,允许用不同的有机或无机材料进行表面功能化/涂层,从而使其适用于不同的方面。本综述总结了最近提出的用于合成适用于不同应用的 SPION 的方法。此外,本文还讨论了 SPION 的惊人特性。最后,概述了 SPION 的一些最新应用。关键词:SPION;药物输送;磁性纳米粒子;顺磁性材料;表面功能化;功能材料。
因此,在SPT体验中使用光学镊子的利用在给示踪剂粒子上的访问中带来了重要的优势,并提供了受控力量以促进观察。在生物物理学中最初和主要应用[24,30,31]光学镊子和SPT越来越多地在物理学[32]和流体动力学等物理学中共同实施。[33] Franosch等,[5],例如,研究了在水中光学捕获的珠的布朗运动,并揭示了周围的水分子曾在曾经被粒子的热运动打扰的粒子上作用。,光学镊子通过提供控制力并从而促进粒子运动的表征在发现这种弱相互作用中起着至关重要的作用。与这些在生物物理学和物理学中的成功演示不同,光学镊子和SPT的结合尚未在化学和表面科学中积极出现。单独的SPT已在表面科学中广泛使用,以揭示扩散的分子级细节,[34,35]质量转运,[18]催化反应,[36]和许多其他过程[37],这些过程与经典的体积或集合测量值无法访问。[38]另一方面,光学诱捕也发现了