摘要 我们提供了恒定弹性经济地理模型中名义和实际工资对生产力冲击暴露的充分统计数据。这些暴露指标总结了每个地点名义和实际工资对所有地点生产力冲击的一阶一般均衡弹性。它们可以使用常见的贸易数据以及贸易和移民弹性值轻松计算。它们在底层经济机制方面具有直观的解释。计算所有双边位置对的这些度量涉及单个矩阵求逆,因此即使在极高维状态空间中仍保持计算效率。这些充分的统计数据提供了理论一致的地点对生产力冲击暴露的度量,可用于进一步的经济和统计分析。关键词:经济地理、贸易、移民 JEL:F10;F15;R12 我们感谢普林斯顿大学的研究支持。我们要感谢张晨明提供的出色研究协助。本文是为《美国经济评论》论文集和会议记录准备的。适用通常的免责声明。
*对于处于数字化转型阶段的组织而言,敏捷性是应对快速变化的技术和商业环境的关键。现在比以往任何时候都更重要的是,以创新为后盾的强大数字思维来实现并超越组织的期望。让企业能够像生物体一样感知、学习、响应和发展,对于实现卓越业务至关重要。一套全面而模块化的服务正是在做到这一点。Live Enterprise 为组织提供直观的决策能力,自动进行大规模决策,基于实时解决方案的可行洞察,随时随地的体验,以及跨职能部门的深入数据可视性,从而实现超高生产力,从而构建互联的组织,共同创新,迎接未来。
机器学习是一门编程科学,让机器像人类一样思考和行动,而无需专门编程。我们在日常生活中已经不知不觉地使用了机器学习。垃圾邮件识别、拼写检查,甚至带你到这里的 YouTube 视频推荐都是使用机器学习实现的。机器学习使用算法来学习任务,这些算法以数据为输入,它们学习执行这些任务。这意味着随着时间的推移,当数据发生变化时,我们不需要重新编程我们的应用程序,只需让它找到模式并从新数据中学习。机器学习是人工智能的一个子集,人工智能是一门科学,旨在将类似人类的智能赋予机器,并创造一种能够感知、推理、行动、适应的机器。深度学习是机器学习的一个分支,其灵感来自人类大脑的工作方式。机器学习正引领我们走向一个机器可以学习和思考的未来。机器学习中的模型选择是针对特定问题选择最适合模型的过程。选择模型取决于各种因素,例如数据集、任务、模型的性质等。
本书最初是滑铁卢大学三年级本科纯数学课程 PMATH 343“量子信息数学”的课程笔记。我将把它放到网上,供任何觉得有用的人使用。有一个较长的介绍介绍了本书的内容,但是简短的版本是:这是一本本科教科书,涵盖高级线性代数(以及一些基本的矩阵分析)和量子概率(量子力学的基础数学框架),适合想要学习量子信息和量子计算的读者。本书是从“纯数学”的角度编写的:使用定理和证明来研究概念,我们尝试以独立于基础的方式进行线性代数。希望从这个描述中可以清楚地看出,这不是一本关于量子力学的书。量子概率是量子力学的数学框架,但本书是关于这个框架的数学方面,而不是关于如何实际使用该框架。此外,除了一些非常基本的内容外,本书并没有涉及太多有关信息或计算的内容。如果你主要对量子计算感兴趣,则无需从本书开始;有许多优秀的本科教科书,你只需学习线性代数入门课程即可入门。事实上,大多数从事该领域工作的人只是使用基于基础的线性代数方法。因此,从其他地方开始是完全合理的,如果你发现自己问数学问题,例如“为什么克罗内克积是这样定义的?”,请回到本书。另一方面,从一开始就知道自己想学习量子计算及其背后的所有数学知识的读者(这似乎描述了大多数在滑铁卢大学参加该课程的学生)可以从这里开始:读完本书后,你将熟练掌握量子计算中使用的数学语言,并准备好阅读其他书籍或参加其他课程。本书讨论的大多数线性代数概念在量子信息之外也得到广泛应用。对于主要对其他应用感兴趣的读者来说,量子概率是一种很好的入门方式。
Farhi 等人提出的量子近似优化算法 (QAOA) 是一种用于解决量子或经典优化任务的量子计算框架。在这里,我们探索使用 QAOA 解决二元线性最小二乘 (BLLS);这个问题可以作为线性代数中其他几个难题的构建块,例如非负二元矩阵分解 (NBMF) 和非负矩阵分解 (NMF) 问题的其他变体。之前在量子计算中解决这些问题的大部分努力都是使用量子退火范式完成的。就这项工作的范围而言,我们的实验是在无噪声量子模拟器、包括设备真实噪声模型的模拟器和两台 IBM Q 5 量子比特机器上进行的。我们重点介绍了使用 QAOA 和类似 QAOA 的变分算法解决此类问题的可能性,其中试验解决方案可以直接作为样本获得,而不是在量子波函数中进行幅度编码。我们的数值结果表明,即使步骤数很少,对于采样基态的概率,模拟退火在 QAOA 深度 p ≤ 3 的情况下也能胜过 BLLS 的 QAOA。最后,我们指出了目前在基于云的量子计算机上实验实施该技术所面临的一些挑战。
量子算法已经发展成为高效解决线性代数任务的算法。然而,它们通常需要深度电路,因此需要通用容错量子计算机。在这项工作中,我们提出了适用于有噪声的中型量子设备的线性代数任务变分算法。我们表明,线性方程组和矩阵向量乘法的解可以转化为构造的汉密尔顿量的基态。基于变分量子算法,我们引入了汉密尔顿量变形和自适应分析,以高效地找到基态,并展示了解决方案的验证。我们的算法特别适用于具有稀疏矩阵的线性代数问题,并在机器学习和优化问题中有着广泛的应用。矩阵乘法算法也可用于汉密尔顿量模拟和开放系统模拟。我们通过求解线性方程组的数值模拟来评估算法的成本和有效性。我们在 IBM 量子云设备上实现了该算法,解决方案保真度高达 99.95%。2021 中国科学出版社。由 Elsevier BV 和中国科学出版社出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
向量不仅仅表示数据。它们还有助于表示我们的模型。许多类型的机器学习模型将其学习表示为向量。所有类型的神经网络都是这样做的。给定一些数据,它将学习该数据的密集表示。这些表示本质上是用于识别新给定数据的类别。
关于这本书。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.4 MATLAB简要介绍。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5关于良好编程风格的建议。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11项目概述。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12项目1:MATLAB中具有矩阵的基本操作。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.13项目2:矩阵操作和图像操作。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18项目3:矩阵乘法,反转和照片滤镜。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24项目4:在MATLAB中求解线性系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29项目5:线性方程式和大学橄榄球队排名(以Big 12为例)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.34项目6:重新审视卷积,内部产品和图像处理。。。。。。。。。。。。。。。。。。。。。。40项目7:规范,角度和您的电影选择。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44项目8:插值,外推和气候变化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.49项目9:正交矩阵和3D图形。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.58项目10:离散的动态系统,平面的线性变换和混乱游戏。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。64项目11:项目,eigeriors,主要分析部分以及其他内容。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。70项目12:矩阵特征值和Google的Pagerank算法。。。。。。。。。。。。。。。。。。。。。。.74项目13:社交网络,聚类和特征值问题。。。。。。。。。。。。。。。。。。。。。。。。。。。.79项目14:奇异值分解和图像压缩。。。。。。。。。。。。。。。。。。。。。。。。。。85个附录。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。91参考。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。107