HHL 算法由 Aram Harrow、Avinatan Hassidim 和 Seth Lloyd 于 2009 年提出,用于利用量子计算原理求解线性方程组。为了求解这样的系统,我们将问题表示为 A | x ⟩ = | b ⟩ 的形式,其中 | x ⟩ 和 | b ⟩ 是归一化向量,A 是厄米矩阵。该过程涉及利用量子相位估计 (QPE) 子程序查找矩阵的特征值。这反过来又利用了逆量子傅里叶变换 (QFT)。然后使用确定的特征值实现受控旋转,以有效地找到矩阵 A 的逆。这使我们能够计算 | x ⟩ = A − 1 | b ⟩ 。最后一步是取消计算相位估计。接下来我们讨论该算法在物理硬件上的逐步实现,并在IBM量子计算机上模拟结果。最后,我们将经典算法的运算次数与有望大幅提高计算速度的HHL算法进行比较。
当今的中型量子计算机虽然不完美,但已经能够执行明显超出现代经典超级计算机能力的计算任务。然而,到目前为止,量子大规模解决方案仅针对有限的问题集实现。这里采用基于相位估计和电路宽度和深度的经典优化的混合算法来解决科学和工程领域中普遍存在的一类特定大型线性方程组。引入了基于相关相位估计幺正运算的纠缠特性的线性系统分类,从而能够通过简单的矩阵到电路映射高效地搜索解决方案。在几台 IBM 量子计算机超导量子处理器上实现了一个 2 17 维问题,这是量子计算机解决线性系统的破纪录结果。演示的实现为未来线性方程组解的量子加速探索设定了明确的基准。
摘要:求解线性方程组是经典辨识系统中最常见、最基本的问题之一。给定一个系数矩阵A和一个向量b,最终任务是寻找解x使得Ax=b。基于奇异值估计技术,该文提出一种改进的量子方案,对于一般的m×n维矩阵A,在O(κ2√rpolylog(mn)/ϵ)时间内得到线性方程组解对应的量子态|x⟩,该方案优于现有的量子算法,其中κ为条件数,r为矩阵A的秩,ϵ为精度参数。同时,我们还设计了一个针对齐次线性方程组的量子电路,并取得了指数级的提升。我们方案中的系数矩阵A是与稀疏性无关的非方阵,可以应用于更一般的场合。我们的研究提供了一个通用的量子线性系统求解器,可以丰富量子计算的研究范围。
项目名称 理学学士 – 人工智能与机器学习 课程代码/名称 UGAM101 / 线性代数与微积分 年份/学期 I / ILTPC 3 1 0 4 课程目标: 1. 用矩阵方法解释线性方程组的解。 2. 讨论级数的收敛和发散。 3. 解释二元函数的偏导数和极值 4. 讨论标量和矢量函数的物理解释 5. 讨论矢量线、曲面和体积积分。 课程成果: 成功完成课程后,学生将能够: 1. 应用矩阵方法解线性方程组 2. 测试无限级数的收敛和发散。 3. 确定二元函数的极值。 4. 将向量微分算子应用于标量和向量函数 5. 用格林函数求解线、表面和体积积分,UNIT-I 矩阵 12 矩阵的秩、梯形、线性方程组的一致性、向量的线性依赖性、特征值、特征向量、特征值的性质、凯莱-哈密顿定理、二次型、通过线性变换将二次型简化为标准形式、二次型的性质。UNIT-II 无穷级数 12 数列和级数收敛的定义。正项级数 – 收敛的必要条件、比较检验、极限形式比较检验、达朗贝尔比率检验、拉贝检验、柯西根检验、交错级数、莱布尼茨规则、绝对和条件收敛。 UNIT-III 偏微分及其应用 12 两个或多个变量的函数,偏导数,高阶偏导数,全导数,隐函数的微分,雅可比矩阵,两个变量函数的泰勒展开式,两个变量函数的最大值和最小值。 UNIT-IV 向量微分学 12 标量和向量点函数,向量算子 Del,梯度,方向导数,散度,旋度,Del 两次应用于点函数,Del 应用于点乘积
量子算法已经发展成为高效解决线性代数任务的算法。然而,它们通常需要深度电路,因此需要通用容错量子计算机。在这项工作中,我们提出了适用于有噪声的中型量子设备的线性代数任务变分算法。我们表明,线性方程组和矩阵向量乘法的解可以转化为构造的汉密尔顿量的基态。基于变分量子算法,我们引入了汉密尔顿量变形和自适应分析,以高效地找到基态,并展示了解决方案的验证。我们的算法特别适用于具有稀疏矩阵的线性代数问题,并在机器学习和优化问题中有着广泛的应用。矩阵乘法算法也可用于汉密尔顿量模拟和开放系统模拟。我们通过求解线性方程组的数值模拟来评估算法的成本和有效性。我们在 IBM 量子云设备上实现了该算法,解决方案保真度高达 99.95%。2021 中国科学出版社。由 Elsevier BV 和中国科学出版社出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
[23] Chia, N.-H.、Gily´en, A.、Lin, H.-H.、Lloyd, S.、Tang, E. 和 Wang, C. 量子启发算法,用于解决对维数具有对数依赖性的低秩线性方程组。在第 31 届国际算法和计算研讨会(ISAAC)论文集上,2020 年,第 47:1-47:17 页。早期版本可在 arXiv 上找到:1811.04909。
[23] Chia, N.-H.、Gily´en, A.、Lin, H.-H.、Lloyd, S.、Tang, E. 和 Wang, C. 量子启发算法,用于求解对维数具有对数依赖性的低秩线性方程组。在第 31 届国际算法和计算研讨会 (ISAAC) 论文集上,2020 年,第 47:1-47:17 页 Kor´abbi verzi´o fellelhet˝os´ege arXiv: 1811.04909。
本课程介绍有限维抽象向量空间和线性变换的理论。主题包括:线性方程组、矩阵、矩阵代数、行列式和逆、线性组合和线性独立性、抽象向量空间、基和坐标变换、内积空间、正交基。我们还考虑线性变换、同构、线性映射的矩阵表示、特征值和特征向量、对角化和相似性。应用包括计算机图形学、马尔可夫链、化学、线性回归、网络流、电路和微分方程。
这项研究的智力价值在于它能够将量子计算与经典 CFD 方法联系起来。先前的研究强调了经典方法在扩展到复杂流体系统时的局限性。通过采用 HHL 算法(该算法为求解线性方程组提供了指数级加速),该项目旨在为该算法在实际 CFD 应用中的有效性提供经验证据。此外,这项研究可以为量子算法在物理学和工程学其他领域的更广泛适用性提供见解,从而加深我们对量子增强计算能力的理解。