第 2 单元:代数和超越方程的解:迭代法 - 二分法、假位置法(Regula Falsi 方法)、不动点迭代法、牛顿拉夫森法、广义牛顿法、拉马努金法、穆勒法;加速收敛 - Aitken 方法、Graeffe 根平方法、复根。第 3 单元:矩阵:矩阵运算:加法、减法和乘法。矩阵、矩阵的转置、矩阵的逆、矩阵的秩、向量和矩阵范数、特征值问题:对称三对角矩阵的特征值、Householder 方法、QR 方法。第 4 单元:线性方程组的解:高斯消元法、高斯-乔丹法;非线性方程组的解:不动点迭代法、牛顿-拉夫森法,书籍:1. 数值分析入门方法,SS Sastry,Prentice Hall India,第 3 版。2. 计算机在物理学中的应用,Suresh Chandra,Narosa 3. 计算机导向数值方法,V. Rajaraman,第 3 版。1GP4-电子实验室。(实用)
微电网是一种经过验证的范例,可以灵活管理分布式能源 (DER) 并确保电力在停电时的弹性[1,2]。在众多微电网功能中,状态估计至关重要,因为它能够基于有限数量的传感器(例如微型PMU(微相量测量单元))对微电网进行在线监控。微电网状态估计的基本要求主要包括准确性、效率和抗噪声能力[3]。对于现代微电网,由于社区扩大、不确定可再生能源的高渗透率和不稳定的运行条件,对高频状态估计的需求日益迫切和重要[4]。然而,几乎所有经典状态估计方法的复杂性都随着问题规模呈多项式增长,这使得这些方法不再适合具有强大实时运行需求的未来电网。为了克服复杂性问题,量子计算提供了一种有前途的解决方案。与经典计算不同,量子计算需要更少的比特(即量子比特)来处理复杂问题。对于微电网状态估计,一个主要的瓶颈是建立一种高效的稀疏线性方程组求解器。目前,量子线性系统算法主要有两种:混合量子/经典算法和基于量子电路的算法[5,6]。混合算法是为噪声中尺度量子(NISQ)时代开发的。例子包括变分量子线性系统
课程名称:数学 1(必修,第一学期,7 ECTS) 课程目标:本课程旨在使学生能够将通过本课程获得的知识应用于电气工程和计算机研究专业课程的辅助工具。 学习成果:成功完成本课程后,学生将能够: 1. 了解并设计解决其专业领域中涉及复数运算的各种问题。使用矩阵和行列式,他们能够解决和应用与线性方程组相关的问题。 2. 理解和应用向量概念以及空间解析几何中的其他元素,设计和开发这些问题。 3. 在研究中发现各种电现象的功能连接大小,然后通过微分学描述和检查它们,知道如何找到它们的最大值并通过图形表示整体,注意它们的所有属性。 课程内容。实数和复数。矩阵、行列式和线性系统求解。向量运算和向量的线性组合。两个向量的标量积和它们之间的角度。向量的向量积、标量三重积和向量三重积。向量的线性独立性和向量的基分解。单变量函数、极限及其连续性。序列的极限。级数的定义及其收敛性。级数收敛的准则。函数的导数及其应用。教学方法:45 小时讲座 + 45 小时听课练习。约 120 小时个人学习和练习。评分制度:家庭作业 10%,期中考试 30%,期末考试 60% 文学:
我们给出了一个多项式时间量子算法,用于求解具有确定多项式模噪比的带错学习问题 (LWE)。结合 Regev [J.ACM 2009] 所示的从格问题到 LWE 的简化,我们得到了多项式时间量子算法,用于求解所有 n 维格在 ˜ Ω(n4.5) 近似因子内的决策最短向量问题 (GapSVP) 和最短独立向量问题 (SIVP)。此前,还没有多项式甚至亚指数时间量子算法可以求解任何多项式近似因子内所有格的 GapSVP 或 SIVP。为了开发一种求解 LWE 的量子算法,我们主要介绍了两种新技术。首先,我们在量子算法设计中引入具有复方差的高斯函数。特别地,我们利用了复高斯函数离散傅里叶变换中喀斯特波的特征。其次,我们使用带复高斯窗口的窗口量子傅里叶变换,这使我们能够结合时域和频域的信息。使用这些技术,我们首先将 LWE 实例转换为具有纯虚高斯振幅的量子态,然后将纯虚高斯态转换为 LWE 秘密和误差项上的经典线性方程,最后使用高斯消元法求解线性方程组。这给出了用于求解 LWE 的多项式时间量子算法。
量子计算机的发展受到了这样一种想法的刺激,即在解决计算任务时实现比基于传统原理的机器高得多的速度,并且与密码学(Shor,1994)、搜索(Grover,1996)、优化(Farhi 等人,2014)、量子系统模拟(Lloyd,1996)和求解大型线性方程组(Harrow 等人,2009)等问题相关。现有的量子计算设备原型使用各种物理平台来实现量子计算协议,例如超导电路(Arute 等,2019 年;Wu 等,2021 年)、半导体量子点(Xue 等,2022 年;Madzik 等,2022 年;Noiri 等,2022 年)、光学系统(Zhong 等,2020 年;Madsen 等,2022 年)、中性原子(Ebadi 等,2021 年;Scholl 等,2021 年;Henriet 等,2020 年;Graham 等,2022 年)和捕获离子(Zhang 等,2017 年;Blatt and Roos,2012 年;Hempel 等,2018 年)。尽管有几项实验报告称在解决采样问题方面取得了量子优势(Arute 等人,2019 年;Wu 等人,2021 年;Zhong 等人,2020 年),但现有一代量子计算机的计算能力有限。这些限制与以下事实有关:为了解决实际相关的计算问题,必须将设备相对于所用信息载体数量(例如,量子比特,它们是经典比特的量子对应物)的可扩展性与对量子比特的高质量操作相结合
用数值方法求解方程。• CO5:应用插值概念求解数值微分和积分问题。教学大纲:矩阵代数:基本列变换和行变换、通过基本行运算求逆矩阵、矩阵的梯形和秩、线性方程组:一致性、高斯消元法、高斯-乔丹法、雅可比法和高斯-赛德尔法求解、特征值和特征向量:基本性质、谱矩阵分解、对角化、矩阵的幂。向量空间:向量概念向高维的推广、广义向量运算、向量空间和子空间、线性独立性和跨度、基。内积空间和 Gram-Schmidt 正交化过程。线性变换。微分方程及应用:一阶和高阶线性微分方程。用逆微分算子、参数变分法和待定系数法求解齐次和非齐次线性方程。代数和超越方程的解:参数曲线的追踪:摆线和相关曲线。二分法、试位法、牛顿-拉夫森法。用牛顿-拉夫森法求解非线性方程组。插值:有限差分和除差分。牛顿-格雷戈里和拉格朗日插值公式。牛顿除差插值公式。离散数值微分、数值积分:梯形法则、辛普森 1/3 法则和辛普森 3/8 法则。常微分方程的数值解:泰勒级数法、修正欧拉法、龙格-库塔法。参考书:
MTEC101 工程师高等数学 单元 1 傅里叶变换 - 简介、傅里叶积分定理、傅里叶正弦和余弦积分、傅里叶积分的复数形式、傅里叶变换、逆傅里叶变换、性质、调制定理、傅里叶变换的卷积定理、帕塞瓦尔恒等式、函数导数的傅里叶变换、傅里叶与拉普拉斯变换之间的关系。 单元 2 Z 变换 - 简介、Z 变换的性质、逆 Z 变换的求值。 单元 3 矩阵和线性方程组 - 通过高斯消元法及其改进法解线性联立方程、Crout 三角化方法、迭代方法 - 雅可宾方法、高斯-赛达尔方法、通过迭代确定特征值。单元 4 保角映射-保角映射、线性变换、双线性变换、施瓦茨-克里斯托费尔变换。单元 5 变分法-欧拉-拉格朗日微分方程、最速降线问题及其他应用。等周问题、汉密尔顿原理和拉格朗日方程。瑞利-里兹法、伽辽金法。参考文献:1. 高等工程数学 - 作者:BS Grewal 博士;Khanna Publishers 2. 傅里叶级数与边界值问题 - 作者:Churchill;McGraw Hill。3. 复变量与应用 - 作者:Churchill;McGraw Hill。4. 变分法 - 作者:Elsgole;Addison Wesley。5. 变分法 - 作者:Galfand & Fomin;Prentice Hall。 6. 积分变换的使用 - 作者:IN Sneddon、Tata McGraw Hill。
量子计算利用量子力学的独特性质(如叠加和纠缠),以不同于传统计算机的方式执行计算任务 [1]。20 世纪 80 年代初,理查德·费曼 (Richard Feynman) 认为量子架构是模拟自然界中实际量子系统的合适方法 [2],自此以后,人们对量子系统在计算任务中的应用给予了极大关注。量子信息和量子计算最伟大、最著名的成就包括超密集编码 [3]、密码系统的量子公钥分发的 BB-84 算法 [4]、Shor 的整数因式分解算法 [5]、Grover 的数据库搜索算法 [6],以及其他同样重要或相关的示例。这些进展也已触及数学和自然科学的重要领域,量子算法和电路设计已被开发用于完成线性代数任务,如矩阵的特征值[7,8]和奇异值[9,10]分解、求解线性方程组[11]、求解线性[12-14]和非线性[15]微分方程、偏非齐次线性微分方程[16],以及其他潜在应用。当前,噪声中尺度量子 (NISQ) 设备取得了一些进展,例如,任何经典浅电路都无法在合理时间内解决的问题,但事实证明可以通过浅量子电路解决 [17]、谷歌团队利用超导量子处理器架构实现的量子霸权 [18]、使用玻色子采样实现的量子优势 [19],以及在 D-Wave 系统中通过基于量子的架构模拟量子系统 [20]。一般来说,量子算法的实现基于许多步骤,包括数据预处理、输入量子态的准备、输入信息的处理
2) 一般而言,从 N 种资产中选取任意数量的资产构建一个最优投资组合需要 2 N 次计算迭代(假设投资组合是等权重的,并且资产是统一定价的)。在这些假设下,10 种资产可以组合成 1,024(2 10 )个不同的投资组合,这是一个易于管理的数量。但如果资产数量增加到 100 种,则可能的组合数为 2 100 ,大致相当于 10 30 或一千万亿平方。生成 2 100 个组合所需的计算无法在实际时间范围内完成。然而,使用 Markowitz 模型可以稍微减少计算工作量,该模型可以将投资组合优化从组合问题转化为线性系统(矩阵代数)问题。具体而言,Markowitz 模型根据资产各自的事前收益率和资产间收益相关性(协方差),确定在风险承受能力约束下使投资组合方差最小的资产组合。虽然与纯组合问题相比,Markowitz 模型大大减少了计算工作量,但它仍然需要多维代数计算,而随着资产数量的增加,这些计算变得越来越难以处理。借助量子计算,理论上可以使用 Harrow-Hassidim-Lloyd (HHL) 算法将计算工作量减少到 log(N) 次迭代,从而快速求解线性方程组。在上面的例子中,当 N = 10 时,HHL 算法理论上可以在一次迭代中解决投资组合优化问题,即使当 N = 100 时也只需两次迭代即可解决。
我们提出了一种用于准备任意量子态的新型确定性方法。当我们的协议被编译成 CNOT 和任意单量子比特门时,它会准备一个深度为 O (log( N )) 的 N 维状态,时空分配(一种度量标准,它考虑到某些辅助量子比特通常不需要在整个电路中处于活动状态)为 O ( N ) ,这两者都是最优的。当编译成 { H , S , T , CNOT } 门集时,我们表明它比以前的方法需要更少的量子资源。具体来说,它可以准备一个任意状态,误差不超过 ϵ,最佳深度为 O (log( N ) + log(1 /ϵ )),时空分配为 O ( N log(log( N ) /ϵ )),分别优于 O (log( N ) log(log( N ) /ϵ )) 和 O ( N log( N/ϵ ))。我们说明了我们的协议如何通过减少时空分配来快速准备许多不相交状态,而只需要常数因子辅助开销——O ( N ) 个辅助量子位被有效地重用,以准备深度为 O (w + log( N )) 而不是 O (w log( N )) 的 w N 维状态的乘积状态,从而有效地实现每个状态的恒定深度。我们重点介绍了这种能力有用的几个应用,包括量子机器学习、汉密尔顿模拟和求解线性方程组。我们提供我们的协议的量子电路描述、详细的伪代码和使用 Braket 的门级实现示例。