量子计算利用量子力学的独特性质(如叠加和纠缠),以不同于传统计算机的方式执行计算任务 [1]。20 世纪 80 年代初,理查德·费曼 (Richard Feynman) 认为量子架构是模拟自然界中实际量子系统的合适方法 [2],自此以后,人们对量子系统在计算任务中的应用给予了极大关注。量子信息和量子计算最伟大、最著名的成就包括超密集编码 [3]、密码系统的量子公钥分发的 BB-84 算法 [4]、Shor 的整数因式分解算法 [5]、Grover 的数据库搜索算法 [6],以及其他同样重要或相关的示例。这些进展也已触及数学和自然科学的重要领域,量子算法和电路设计已被开发用于完成线性代数任务,如矩阵的特征值[7,8]和奇异值[9,10]分解、求解线性方程组[11]、求解线性[12-14]和非线性[15]微分方程、偏非齐次线性微分方程[16],以及其他潜在应用。当前,噪声中尺度量子 (NISQ) 设备取得了一些进展,例如,任何经典浅电路都无法在合理时间内解决的问题,但事实证明可以通过浅量子电路解决 [17]、谷歌团队利用超导量子处理器架构实现的量子霸权 [18]、使用玻色子采样实现的量子优势 [19],以及在 D-Wave 系统中通过基于量子的架构模拟量子系统 [20]。一般来说,量子算法的实现基于许多步骤,包括数据预处理、输入量子态的准备、输入信息的处理
主要关键词