我们提出了一种用于准备任意量子态的新型确定性方法。当我们的协议被编译成 CNOT 和任意单量子比特门时,它会准备一个深度为 O (log( N )) 的 N 维状态,时空分配(一种度量标准,它考虑到某些辅助量子比特通常不需要在整个电路中处于活动状态)为 O ( N ) ,这两者都是最优的。当编译成 { H , S , T , CNOT } 门集时,我们表明它比以前的方法需要更少的量子资源。具体来说,它可以准备一个任意状态,误差不超过 ϵ,最佳深度为 O (log( N ) + log(1 /ϵ )),时空分配为 O ( N log(log( N ) /ϵ )),分别优于 O (log( N ) log(log( N ) /ϵ )) 和 O ( N log( N/ϵ ))。我们说明了我们的协议如何通过减少时空分配来快速准备许多不相交状态,而只需要常数因子辅助开销——O ( N ) 个辅助量子位被有效地重用,以准备深度为 O (w + log( N )) 而不是 O (w log( N )) 的 w N 维状态的乘积状态,从而有效地实现每个状态的恒定深度。我们重点介绍了这种能力有用的几个应用,包括量子机器学习、汉密尔顿模拟和求解线性方程组。我们提供我们的协议的量子电路描述、详细的伪代码和使用 Braket 的门级实现示例。