量子计算机的发展受到了这样一种想法的刺激,即在解决计算任务时实现比基于传统原理的机器高得多的速度,并且与密码学(Shor,1994)、搜索(Grover,1996)、优化(Farhi 等人,2014)、量子系统模拟(Lloyd,1996)和求解大型线性方程组(Harrow 等人,2009)等问题相关。现有的量子计算设备原型使用各种物理平台来实现量子计算协议,例如超导电路(Arute 等,2019 年;Wu 等,2021 年)、半导体量子点(Xue 等,2022 年;Madzik 等,2022 年;Noiri 等,2022 年)、光学系统(Zhong 等,2020 年;Madsen 等,2022 年)、中性原子(Ebadi 等,2021 年;Scholl 等,2021 年;Henriet 等,2020 年;Graham 等,2022 年)和捕获离子(Zhang 等,2017 年;Blatt and Roos,2012 年;Hempel 等,2018 年)。尽管有几项实验报告称在解决采样问题方面取得了量子优势(Arute 等人,2019 年;Wu 等人,2021 年;Zhong 等人,2020 年),但现有一代量子计算机的计算能力有限。这些限制与以下事实有关:为了解决实际相关的计算问题,必须将设备相对于所用信息载体数量(例如,量子比特,它们是经典比特的量子对应物)的可扩展性与对量子比特的高质量操作相结合
主要关键词