作者贡献:构思和设计实验:A.L.,B.H.A.,V.A.,R.T.D进行了实验:Y.H.,S.S.S.S.D分析了数据:Y.H.,S.S.S.S.S.,P.E. J.J.,B.H.A.,V.A.,R.T.D。在其他作者的贡献中,竞争利益声明:作者声明没有竞争利益。分类:生物科学:生物化学;物理科学:生物物理学和计算生物学关键词:组蛋白;晶体结构;核小体;染色质;核苷此文件包括:
摘要:DNA修复途径在基因组稳定性中起关键作用,但是在真核细胞中,它们必须在染色质的紧凑和纠结环境中进行修复DNA病变。先前的研究表明,将DNA包装到核小体中,构成了染色质的基本构件,对DNA修复具有深远的影响。在这篇综述中,我们讨论了有关染色质DNA修复的原理和机制。我们关注组蛋白翻译后修饰(PTM)在修复中的作用,以及组蛋白突变体影响细胞对DNA损伤剂和染色质修复活性的分子机制。重要的是,这些机制被认为会显着影响人类癌症的体细胞突变率,并有可能导致癌变和其他人类疾病。例如,许多主要在酵母中研究的组蛋白突变体已被确定为不同癌症中酒精酮突变的候选者。本综述强调了这些联系,并讨论了DNA修复在染色质中的潜在重要性。
。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月6日。; https://doi.org/10.1101/2024.04.04.04.05.588317 doi:biorxiv Preprint
基于染色质的表观遗传记忆依赖于父母组蛋白H3 - H4四聚体的准确分布到新复制的DNA链。mcm2,复制酶的亚基和DPB3/4,DNA聚体酶ε的亚基,分别控制着父母组蛋白H3 - H4沉积到滞后和领先链中。但是,它们对表观遗传的贡献仍然存在争议。在这里,使用裂变酵母异染色质遗传系统消除了引发途径的干扰,我们表明MCM2组蛋白结合突变会严重破坏异染色质的遗传,而DPB3/4中的突变仅导致中度缺陷。令人惊讶的是,MCM2和DPB3/4的同时突变稳定异染色质遗传。ESPAN(蛋白质相关的新生DNA的富集和抑制)分析证实了在亲本组蛋白H3 - H4分离中的MCM2和DPB3/4功能的保存,其合并缺失显示出与单个单独突变相比,它们更对称性H3 - H4的对称分布。此外,组蛋白伴侣伴侣调节父母组蛋白转移到链中,并与MCM2和DPB3/4合作,以维持亲本组蛋白H3 - H4 - H4密度和忠实的异染色质遗传。这些结果强调了父母组蛋白的符号分布及其在DNA复制过程中父母组蛋白伴侣伴侣的表观遗传遗传和揭示出独特特性的符号分布的重要性。
经过攻击后(第二剂疫苗接种后两周和两个月),与未接种疫苗的对照组相比,接种疫苗的马匹的急性临床症状有所减少。在接种疫苗的动物中,约 43%(28 匹小马中的 12 匹)没有发热(发热定义为三天中有两天体温达到或超过 39°C)。与未接种疫苗的动物相比,接种疫苗的动物发热天数明显较少。 - 36%(28人中的10人)没有出现咳嗽症状。 - 43%(28匹小马中的12匹)没有出现吞咽困难的迹象。 - 43%(28 人中的 12 人)在毒性测试后没有表现出明显抑郁的迹象(食欲不振、行为明显改变)。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
抽象背景可以通过特异性靶向触发抗体依赖性细胞介导的细胞毒性(ADCC)或通过遗传工程来表达嵌合抗原受体(CARS)来增强自然杀伤(NK)细胞的抗肿瘤活性。尽管抗体或汽车靶向,但某些肿瘤仍然对NK细胞攻击具有抗性。已知ICAM-1/LFA-1相互作用对NK细胞的自然细胞毒性的重要性,但它对ERBB2(HER2)特异性抗体曲妥珠单抗和ERBB2-培养基介导的NK细胞细胞毒性抗乳腺癌细胞诱导的ADCC的影响。方法,我们使用了表达高亲和力FC受体FcγRIIIA的NK-92细胞与曲妥珠单抗或ERBB2- CAR工程NK-92细胞(NK-92/5.28.Z)以及与ERBB2-CAR-2-CAR-2-CAR-2-CARID-ICAMID CYAMIS CYMINIC CYMINID CYMINIC CYMINID-CAR-2-CAR-2-CAR-92细胞(NK-92/5.28.z)结合使用,并或替代阻断NK细胞上的LFA-1。此外,我们特别刺激了FC受体,CAR和/或LFA-1,以研究其在免疫突触时的串扰,及其对抗体靶向抗体或靶向的NK细胞中脱粒和细胞内信号的贡献。结果阻断了LFA-1或ICAM-1的不存在会在曲妥珠单抗介导的ADCC中显着降低细胞杀伤和细胞因子释放,以针对ERBB2-阳性乳腺癌细胞,但在靶向汽车的NK细胞中并非如此。用5-Aza-2'-脱氧胞苷进行预处理,诱导ICAM-1上调,并反转ADCC中的NK细胞耐药性。此外,刺激抑制性NK细胞检查点NKG2A曲妥珠单抗单独没有充分激活NK细胞,需要额外的LFA-1共同刺激,而在CAR-NK细胞中ERBB2型车的激活会诱导的有效脱粒化,而与LFA-1无关。总内反射荧光单分子成像表明,CAR-NK细胞与排除ICAM-1的肿瘤细胞形成了不规则的免疫学突触,而曲妥珠单抗形成了典型的外周上分子超分子激活簇(PSMAC)结构。从机理上讲,ICAM-1的缺失不会影响ADCC期间的细胞 - 细胞粘附,而是导致通过PYK2和ERK1/2的信号降低,这是由CAR介导的靶向本质上提供的。
DNA 复制是细胞分裂和增殖的核心,涉及数百种蛋白质之间紧密协调的功能(1、2)。尽管复制机制非常精确,但它面临着来自内在和外在因素的挑战(3)。这些挑战可能导致复制叉停滞、DNA 断裂、复制精度降低以及其他统称为 RS 的因素(4)。因此,细胞进化出了一种强大的 RS 反应,可激活 DNA 损伤修复信号或诱导细胞死亡,以维持细胞群内的基因组完整性(5-9)。由于持续的增殖信号和/或 DNA 修复缺陷,癌细胞会经历持续的复制压力(10、11),使其强烈依赖 RS 反应。这种依赖性的结果是复制压力成为癌症治疗中可利用的治疗弱点(12、13)。许多癌症疗法利用复制压力来消除癌细胞,使用多种 RSi 机制(补充图 S1)。经典化疗药物通过直接影响 DNA 完整性来诱发 RS。
GSK864(IDH1I)和DNA破坏特工Olaparib(OLAP)或顺铂(CIS)单独或合并。%,并将其标准化为对照。d)在谷氨酰胺饥饿的条件下培养了指定的CCNE1-低(橙色)和 - 高(紫色)同源细胞,并单独或单独或单独或合并用DNA损害剂Olaparib(OLAP)或顺铂(Cisplatin(Cis)处理。%的细胞,并将其标准化为媒介物对照。e)将IP基因细胞注射到免疫功能低下的雌性小鼠(n = 8/组)中。表达空载体(ev)=橙色的单元格;表达CCNE1(CCNE1)=紫色的细胞。单独或组合使用媒介物,IDH1抑制剂GSK864(IDH1I)和Olaparib(OLAP)处理小鼠。在端点,通过计算腹膜肿瘤结节来计算肿瘤负担。f)仅用IDH1抑制剂GSK864(IDH1I)处理指示的CCNE1高细胞,单独使用DNA破坏药物Olaparib(OLAP)或顺铂(CIS)(CIS)(cis)(黄色)(黄色)(黄色)(黄色),并与细胞渗透性的A kg(绿色)或柠檬酸盐(蓝色)结合使用。%,并将其标准化为对照。g)在谷氨酰胺饥饿条件下培养了指定的CCNE1高细胞,并用DNA损伤剂Olaparib(OLAP)或顺铂(CIS)(CIS)(CIS)(黄色)和可渗透的细胞渗透kg(绿色)处理。%的细胞,并将其标准化为媒介物对照。h)依赖性二氧酶CRISPR KO屏幕的示意图。i)CRISPR KO屏幕的分析。所有图表示平均值±SD。显示为Log2折叠分数(CCNE1 + Olaparib vs. CCNE1)与(EV + Olaparib vs.EV)中的负分数的变化。J)在两个CCNE1高细胞系中5个负富集基因的Venn图。k)用SHGFP(Shcont-紫色)或两个靶向TMLHE的独立shRNA(SHTMLHE#1-浅蓝色,浅蓝色,SHTMLHE#2-深蓝色)转导指示的CCNE1高细胞,并用DNA损害剂Olaparib(Olap)用Cell-Cell-clip-carn的dna损害剂处理(la)或l-CARNIT(l-CARNIT)。%的细胞,并将其标准化为媒介物对照。l)单独使用肉碱合成抑制剂(Mildro)或单独使用DNA损伤剂Olaparib(OLAP)(紫色)和组合(黄色)处理指示的CCNE1高细胞。组合处理的细胞用可渗透的细胞A kg(绿色)或L- carnitine(L-Carn; Maroon)补充。%的细胞,并将其标准化为媒介物对照。m)用IDH1抑制剂GSK864(IDH1I)和单独的DNA损伤剂Olaparib(OLAP)(紫色)和组合(黄色)处理指示的CCNE1高细胞。组合处理的细胞用L-肉碱(L-Carn; Maroon)补充。%的细胞,并将其标准化为媒介物对照。n)在谷氨酰胺饥饿条件下(紫色)培养指示的CCNE1-高细胞,并单独用DNA损伤剂Olaparib(OLAP)(黄色)或补充L-Carnitine(L-Carn; Ma-Roon)。%,并将其标准化为对照。**** p <0.005,ns =不显着o)kg是tmlhe和carnitine上游的示意图。(A-D,F)显示的是来自每个等源性细胞系对中至少3个独立实验的代表性数据。(G,K-N)是来自每个等源性细胞系对中2个独立实验的代表性数据。
尽管核心组蛋白基因的蛋白质序列保守,但它们表现出显著的顺式调控机制多样性。然而,这种调控周转的动态和意义尚不清楚。在这里,我们描述了芽殖酵母中 4 亿年来核心组蛋白基因调控的进化史。我们发现,由反式调控因子 Spt10 介导的典型核心组蛋白调控模式很古老,可能出现于 3.2 亿至 3.8 亿年前,并且在大多数现存物种中都是固定的。出乎意料的是,我们发现 Hanseniaspora 属在其快速进化的谱系中出现了一种新的核心组蛋白调控模式,这与其旁系同源核心组蛋白基因的 1 个拷贝丢失同时发生。我们表明,通过组蛋白控制区中的顺式调控变化,祖先的 Spt10 组蛋白调控模式被衍生的 Mcm1 组蛋白调控模式所取代,并且这种重新布线事件发生时反式调控因子 Mcm1 本身没有变化。最后,我们研究了转基因 Hanseniaspora uvarum 的细胞周期和组蛋白合成的生长动力学。我们发现 H. uvarum 分裂迅速,大多数细胞在 60 分钟内完成一个细胞周期。有趣的是,我们观察到 H. uvarum 中组蛋白和 DNA 合成之间的调控耦合丢失了。我们的结果表明,核心组蛋白基因调控在芽殖酵母中早已固定,但在 Hanseniaspora 快速进化谱系中却发生了很大分化。