摘要表面刻度聚合物(SIPS)是模仿抗体的分子识别能力但具有增强稳定性的仿生受体。传统的接触印记,用于sip fabripation是劳动力密集的,由于手动聚合物合成,可能会产生不一致的结果。为未来的SIP奠定基础,并用三维(3D)打印机印刷,我们的研究先驱者使用FormLabs清除3D打印树脂来创建针对细菌检测的SIP,从而消除了手册的综合步骤。我们使用大肠杆菌作为基准模板细菌生产SIP,分析其结构,并通过荧光显微镜评估其重新固定能力。为了测试交叉选择性,产生了五个其他细菌菌株的SIP,随后暴露于每种细菌菌株,突显了SIPS的特定属性针对其原始细菌模具。鉴于其3D打印适用性和材料的商业可用性,我们设想在复杂的表面上使用bacte-ria结合烙印,从而加强了生物技术,工业和环境单调的生物传感。
摘要 本研究的目的是评估细菌能力的诱导以便随后进行转化。细菌转化是重组DNA技术中的关键过程。在自然界中,细菌在极其特殊的情况下以短暂的方式从环境中捕获游离DNA。诱导这种转移的体外方法首先需要使细菌具有随后进行转化的能力。因此,这项工作对两个步骤都进行了体外测试。所有协议均在 UTFPR 蓬塔格罗萨校区的生物工程实验室进行。使用大肠杆菌DH5-alpha菌株进行能力诱导,并使用质粒pUC19进行转化。所得结果表明转化细胞成功生长,可以在选择性培养基中选择出对质粒所具有的抗生素具有抗性的细胞。这些技术对分子生物学和基因工程具有重要意义,可以对细菌遗传物质进行控制操作,以用于各种生物技术应用,例如生产异源蛋白质,从而在扩展遗传知识和开发新生物技术方面发挥着重要作用。关键词:分子生物学;生物技术;基因转化。
非常关注植物提取物在牲畜和家禽生产中的应用,作为被禁止添加剂(例如抗生素)的替代品。植物提取物是从植物材料中提取的天然化合物或成分的混合物。由于存在众多具有药理特性的生物活性化合物,因此它们具有巨大的研究潜力。此外,由于它们的天然,可生物降解的性质以及减少对合成化学物质的依赖的能力,它们被认为是可持续和环保的选择。有关植物提取物在青贮饲料保存中施用的庞大科学研究已经报道了这种富集的植物的潜在抗真菌剂(Cock and van Vuuren,2015年),芦荟提取物具有广泛的微生物抑制活性,据报道它具有明显的抑制作用,并且对我的抑制作用具有明显的抑制作用,因此(命中率)(命中率)(命中率)(命中率)。 Al。,2013)。茶厂的有机简易提取物含有各种天然非离子表面活性剂,它们可以与某些抗菌剂合作以拮抗真菌(Hao等,2010)。一些研究报告说,ficus hirta vahl的乙醇提取物
问题:大的地球大黄蜂(Bombus terrestris)保持了社会核心肠道微生物,与蜜蜂相似,蜜蜂对宿主的健康和抵抗起着重要作用。在实验室条件下使用商业蜂箱进行的实验仅限于垂直传播的微生物和忽视环境因素的影响或微生物的外部收购。各种环境和景观水平因素可能会影响授粉昆虫的肠道菌群,这对农业生态系统的授粉媒介健康和舒适性产生了影响。仍然,尚不完全清楚是否可以对大黄蜂微生物群具有重要影响。在这里,我们在半场实验中进行了测试,如果大黄蜂微生物群在暴露于户外笼子内不同型号多样性时随着时间的流逝而变化。我们使用商业蜂箱分别与巢环境或暴露的外部环境区分垂直和水平传播的细菌。
结果:使用宏基因组测序系统和填充微生物群落分类学组成,总共注释了7,703种,而使用代谢物促进液则鉴定了50,046个代谢物。AS和健康对照患者之间发现了差异微生物和代谢物。此外,TNFI得到了确认,以部分恢复肠道菌群和代谢产物。对菌群和代谢产物进行了多词分析,以确定差异微生物和代谢产物之间的关联,鉴定出与抑制病原菌细菌ruminococcoccus gnavus以及促进促进性细菌细菌的抑制相关的化合物,这些化合物(如羟硫素醇和生物素)相关。通过实验研究,进一步确定了微生物与代谢产物之间的关系,并且探索了这两种类型的微生物对肠上皮细胞的影响以及炎症性细胞因子介绍介物-18(IL-18)。
根结线虫(Meloidogyne spp。,rkn)是全球最具破坏性的内寄生虫线虫之一,通常导致作物生长和产量的降低。洞悉宿主-RKN相互作用的动力学,尤其是在不同的生物和非生物环境中,对于设计新型的RKN缓解措施可能是关键的。植物促进生长细菌(PGPB)涉及不同的植物生长增强活动,例如生物铜质化,病原体抑制和全身耐药性的诱导。我们总结了有关PGPB和非生物因素(例如土壤pH,质地,结构,水分等)作用的最新知识。在调节RKN-host相互作用中。rkn直接或间接地受到不同PGPB的影响,相互作用中的非生物因子相互作用以及对RKN感染的宿主反应。我们强调了(i)PGPB直接和间接影响RKN-宿主相互作用的三方(host-rkn-pgpb)现象; (ii)宿主对根际PGPB的选择和富集的影响; (iii)土壤微生物如何增强RKN寄生虫; (iv)宿主在RKN-PGPB相互作用中的影响,以及(v)非生物因子在调节三方相互作用中的作用。此外,我们讨论了不同的农业实践如何改变相互作用。最后,我们强调将三方互动知识纳入集成的RKN管理策略的重要性。
肠道菌群与其宿主共同发展,深刻塑造了免疫系统的发育和功能。这种共同进化导致了动态关系,其中微生物代谢产物和分子信号影响免疫成熟,耐受性和防御机制,突出了其在维持宿主健康方面的重要作用。最近,细菌外囊泡(BEV),细菌产生的膜纳米颗粒已成为肠平衡和有效的免疫调节剂的重要参与者。这些囊泡反映了细菌膜的特征,并含有核酸,蛋白质,脂质和代谢物。他们可以调节免疫过程,并参与神经系统和代谢性疾病,因为它们在肠道中局部分布和系统地分布,从而影响两个级别的免疫反应。本综述提供了BEV的特征和功能性概述,详细介绍了营养如何影响这些囊泡的产生和功能,抗生素如何破坏或改变其组成以及这些因素如何集体影响免疫力和疾病的发展。It also highlights the potential of BEVs in the development of precision nutritional strategies through dietary modulation, such as incorporating prebiotic fi bers to enhance bene fi cial BEV production, reducing intake of processed foods that may promote harmful BEVs, and tailoring probiotic interventions to in fl uence speci fi c microbial communities and their vesicular outputs.
自从几年前,由于严重急性呼吸道综合征-2(SARS-COV-2)感染的第一个人类受试者以来,冠状病毒病19(Covid-19)迅速传播到世界范围内,在全球范围内迅速蔓延,感染了数亿人,并导致全球健康的保健记忆。自从大流行以来,临床医生和流行病学家注意到,在感染和发展疾病更严重的表现方面,儿童似乎比其成年家庭成员更受病毒保护(Massalska and Gober,2021; Chou等,20222; 2022; Kalyanaraman anderson anderson,20222; kalyanaraman anderson,20222;虽然这种免受严重COVID-19的保护绝不是普遍的,尤其是在具有潜在病理状况的儿童中,但在感染SARS-COV-2的儿科患者中,不可否认的住院或死亡人数较少,而死亡的模式较少(Massalska and Gober(Massalska and Gober,2021; Chou等,2022; 2022; 2022; Kalyanaranaran anderserson,anderserson,20222;许多不同的生物学过程被认为可以赋予小儿共同Covid-19患者的部分保护。From an immunological perspective, studies have indicated that children produce antibodies with higher virus-neutralizing capabilities in response to SARS-CoV-2 infection ( Garrido et al., 2021 ; Massalska and Gober, 2021 ; Yang et al., 2021 ; Chou et al., 2022 ), which has led some researchers to hypothesize that children ' s frequent exposure to respiratory viruses and疫苗使其免疫系统启动,以对SARS-COV-2感染做出强有力的反应(Massalska和Gober,2021年)。此外,儿童自然会产生更多的抗炎性细胞因子,例如IL-10,而免疫激活后IL-10,而IL-6(主要造成许多共同相关死亡的根源的细胞因子,主要负责的细胞因子风暴,在儿童中产生了较少的儿童(Lingappan etal。2020; Massalska and goberber,2021)。然而,尽管是上呼吸系统的疾病,但最近的证据导致了这样的假设:人类肠道微生物组也可以帮助保护更严重的Covid-19。SARS-COV-2感染是通过与血管紧张素转换酶2(ACE2)受体和宿主细胞上的跨膜丝氨酸蛋白酶2(TMPRSS2)的病毒相互作用来实现的(Beyerstedt等人,2021年)。虽然ACE2和TMPRSS2在肺部高度共表达,在该肺中,SARS-COV-2感染造成了最大的损害,但它们在胃肠道中也高度表达(Zhang等,2020)。始终如一地,很大一部分感染了SARS-COV-2的患者也报告了胃肠道症状,并且即使在上呼吸系统清除感染后,在粪便样品中也发现了该病毒(Groff等,2021)。此外,在实验中证实了SARS-COV-2在人肠细胞中积极复制(Lamers等,2020)。鉴于肠中经常存在SARS-COV-2,因此Covid-19与肠道菌群(GM)生理学和生态学的不平衡相关,这通常不足为奇,通常称为营养不良。从机械上讲,已经提出SARS-COV-2通过触发肠道炎症和通过失调ACE2引起了营养不良,这两种ACE2都被证明会改变
人类免疫系统与细胞内细菌之间的战斗是一种复杂而有趣的生存和破坏舞蹈。先天免疫力,是人体针对入侵微生物的第一条防御线,在这种冲突中起着关键作用。本社论探讨了对抗细胞内细菌的先天免疫的机制和策略,强调了免疫系统在维持人类健康中的关键作用。先天免疫是对传染剂的非特定,快速和有效的反应。它依赖于对微生物(称为病原体相关的分子模式(PAMP)的保守分子模式的识别(1)。这种认可触发了一系列旨在消除威胁的免疫反应。先天性免疫对细胞内细菌的关键策略之一是检测和消除感染细胞的能力。此过程涉及通过模式识别受体(PRR)在吞噬细胞(例如巨噬细胞和树突状细胞(Sankar和Mishra))表面检测PAMP。PRR识别细菌成分并启动信号级联,从而导致细胞因子和其他免疫介质产生。这些细胞因子然后募集并激活其他免疫细胞以消除受感染的细胞。另一个重要的策略是抗菌肽(Duarte-Mata和Salinas-Carmona)靶向和破坏细胞内细菌。这些由各种免疫细胞产生的肽具有破坏细胞膜或干扰必需细胞过程的能力。一些抗菌肽甚至充当信号分子以协调免疫反应(Duarte-Mata和Salinas-Carmona)。凋亡是一种最近发现的机制,其先天免疫与细胞内细菌作斗争。此过程的特征是感染宿主细胞的裂解和细胞内含量的释放,这使免疫系统警告感染的存在(2)。凋亡是通过caspase-1激活引发的,响应于PAMP或与损伤相关的分子模式(DAMP)。caspase-1激活导致加油蛋白D的寡聚化,该dasdermin d在细胞膜中形成毛孔,从而导致细胞裂解。细胞内细菌或其成分通过这些毛孔触发
本专业版块的宗旨是为读者提供最高质量的文章,这些文章涉及细菌致病机制和毒力、感染免疫力和疫苗等相互关联的主题。我们的精神在本版块开头的专业大挑战概述中得到了简洁的表达( Christodoulides,2022 年)。研究主题包括来自编辑委员会成员的广泛文章,重点关注导致人类疾病的重要革兰氏阳性和革兰氏阴性细菌病原体,即嗜肺军团菌、假鼻疽伯克霍尔德菌、葡萄球菌属、鼠疫耶尔森菌、铜绿假单胞菌和淋病奈瑟菌。铜绿假单胞菌是一种代谢灵活的革兰氏阴性菌,是引起院内感染的主要机会性病原体(Dolan,2020),由于全球卡巴培南类抗生素耐药性增加,世界卫生组织将其列为开发和引进新抗菌药物和疫苗的“高优先级”菌(World Health Orgainisation,2024)。铜绿假单胞菌是一种强大的细菌,可表达多种毒力因子、类型分泌系统、群体感应途径和胞外多糖,以及核心耐药机制,如药物渗透屏障、染色体编码的 AmpC 酶和六个多药流出泵超家族(Miller and Arias,2024)。流出泵在铜绿假单胞菌感染的发病机制以及对治疗和清除的抵抗中起着重要作用。在他们的小型评论中,Fernandes 和 Jorth 讨论了铜绿假单胞菌流出泵在毒力调节中具有争议和对立的作用。流出泵的主要功能是从细菌细胞中排出抗生素,尽管有证据表明这些泵可能具有影响铜绿假单胞菌毒力的其他功能。流出泵是公认的治疗干预目标(Fernandes 和 Jorth),也是疫苗开发的潜在抗原(Silva 等人,2024 年)。作者得出结论,在抗生素耐药性和细菌致病机制的背景下,针对流出泵可能会产生意想不到的后果,在开发治疗方法时必须考虑到这些后果。疫苗研究的代表论文是关于革兰氏阴性菌鼠疫耶尔森菌和淋病奈瑟菌。鼠疫耶尔森菌是一种自有记载以来就一直困扰着人类的细菌。它对公众健康构成重大风险,并且可能
