由于细菌和昆虫广泛分布于全球,因此细菌和昆虫之间的相互作用会对许多不同领域产生重大影响。由于昆虫是疾病传播的媒介,细菌与昆虫之间的相互作用可能会直接影响人类健康,而且它们之间的相互作用还可能产生经济后果。此外,细菌与昆虫之间的相互作用还与经济上重要的昆虫的高死亡率有关,从而造成巨大的经济损失。微小RNA(miRNA)是一种非编码RNA,参与转录后基因表达的调控。miRNA的长度为19至22个核苷酸。除了能够表现出动态表达模式外,miRNA还具有多种靶标。这使它们能够控制昆虫的各种生理活动,如先天免疫反应。越来越多的证据表明,miRNA通过影响免疫反应和其他抗性机制,在细菌感染中发挥着至关重要的生物学作用。本综述重点介绍了近年来的一些最新和令人兴奋的发现,包括细菌感染背景下 miRNA 表达失调与感染进展之间的相关性。此外,它还描述了它们如何通过靶向 Toll、IMD 和 JNK 信号通路对宿主的免疫反应产生深远影响。它还强调了 miRNA 在调节昆虫免疫反应中的生物学功能。最后,它还讨论了目前关于 miRNA 在昆虫免疫中的作用的知识空白,以及未来需要更多研究的领域。
病毒调节微生物群落的多样性和活性。然而,对它们在流细菌生物膜群落结构中的作用知之甚少。在这里,我们介绍了有关瑞士三种横向冰山的各种流病毒群落多样性和组成的见解。冰期流的特征是极端的环境条件,包括近冻结温度和超寡聚营养。这些条件选择了几个但适应良好的细菌进化枝,这些进化枝在生物膜群落中占主导地位,并通过微生物菌株占据了壁ni。我们使用元基因组测序揭示了这些流中各种生物膜病毒组合。在不同的流量和流中,病毒群落组成与细菌宿主的组成紧密结合,细菌宿主的宿主是由一般高的宿主特定城市强调的。将噬菌体相互作用的预测与辅助代谢基因(AMG)相结合,我们确定了通过感染微生变化枝成员的噬菌体共享的特定AMG。我们的工作为更好地理解细菌之间的复杂相互作用和噬菌体在一般情况下的噬菌体和噬菌体之间提供了一步。
Bin Chen和Edward H. Sargent,多伦多大学摘要今天的能源部门是最大的温室气体发射器,占人为CO 2排放量的约70%。 需要全球能源供应的严格脱碳才能将温度升高到1.5°C以下并到2050年达到净零。 太阳能光伏将发挥关键作用,太阳能光伏的大量升级面临许多挑战。 在这里,我们讨论了材料研究人员如何为这一全球大挑战做出贡献。 使用太阳能光伏(PV)(图1A)收获地球最丰富的可再生能源(太阳到达地球的能量)将在脱碳电力生产中起关键作用。 太阳能是能够缩放到人类所依赖的数十个Terawatts的可再生能源。 PV对净零目标的重要性在其对世界电力能力的预计贡献中可以看到,这仅随着国际能源机构(IEA)报告的渐进性(图1B,Interet)的渐进性而增加。 要达到我们的集体净零目标,需要大量的太阳PV缩放(图1b):国际技术路线图(ITRPV)所描述的最大胆的场景(ITRPV)设想2050年的世界由可再生能源100%供电,solar PV在2020年供应1%和全球供应中,包括69%的供应,包括全球供应,包括2020年的加热,包括电源。Bin Chen和Edward H. Sargent,多伦多大学摘要今天的能源部门是最大的温室气体发射器,占人为CO 2排放量的约70%。需要全球能源供应的严格脱碳才能将温度升高到1.5°C以下并到2050年达到净零。太阳能光伏将发挥关键作用,太阳能光伏的大量升级面临许多挑战。在这里,我们讨论了材料研究人员如何为这一全球大挑战做出贡献。使用太阳能光伏(PV)(图1A)收获地球最丰富的可再生能源(太阳到达地球的能量)将在脱碳电力生产中起关键作用。太阳能是能够缩放到人类所依赖的数十个Terawatts的可再生能源。PV对净零目标的重要性在其对世界电力能力的预计贡献中可以看到,这仅随着国际能源机构(IEA)报告的渐进性(图1B,Interet)的渐进性而增加。要达到我们的集体净零目标,需要大量的太阳PV缩放(图1b):国际技术路线图(ITRPV)所描述的最大胆的场景(ITRPV)设想2050年的世界由可再生能源100%供电,solar PV在2020年供应1%和全球供应中,包括69%的供应,包括全球供应,包括2020年的加热,包括电源。
摘要表面刻度聚合物(SIPS)是模仿抗体的分子识别能力但具有增强稳定性的仿生受体。传统的接触印记,用于sip fabripation是劳动力密集的,由于手动聚合物合成,可能会产生不一致的结果。为未来的SIP奠定基础,并用三维(3D)打印机印刷,我们的研究先驱者使用FormLabs清除3D打印树脂来创建针对细菌检测的SIP,从而消除了手册的综合步骤。我们使用大肠杆菌作为基准模板细菌生产SIP,分析其结构,并通过荧光显微镜评估其重新固定能力。为了测试交叉选择性,产生了五个其他细菌菌株的SIP,随后暴露于每种细菌菌株,突显了SIPS的特定属性针对其原始细菌模具。鉴于其3D打印适用性和材料的商业可用性,我们设想在复杂的表面上使用bacte-ria结合烙印,从而加强了生物技术,工业和环境单调的生物传感。
Rothamsted Research是一家公司限制保证注册办公室的公司:如上所述。在英格兰注册2393175。注册慈善机构802038。增值税编号197 4201 51。由约翰·本内特·劳斯(John Bennet Lawes)于1843年创立。
问题:大的地球大黄蜂(Bombus terrestris)保持了社会核心肠道微生物,与蜜蜂相似,蜜蜂对宿主的健康和抵抗起着重要作用。在实验室条件下使用商业蜂箱进行的实验仅限于垂直传播的微生物和忽视环境因素的影响或微生物的外部收购。各种环境和景观水平因素可能会影响授粉昆虫的肠道菌群,这对农业生态系统的授粉媒介健康和舒适性产生了影响。仍然,尚不完全清楚是否可以对大黄蜂微生物群具有重要影响。在这里,我们在半场实验中进行了测试,如果大黄蜂微生物群在暴露于户外笼子内不同型号多样性时随着时间的流逝而变化。我们使用商业蜂箱分别与巢环境或暴露的外部环境区分垂直和水平传播的细菌。
抽象蛋白水解是维持所有活细胞中蛋白质稳态的重要组成部分。lon是细菌中高度保守的AAA+蛋白酶,可对细胞的需求进行蛋白质质量控制以及调节作用。尽管有越来越多的证据证明了其在细菌生存和适应中的重要性,但我们对其中几种途径如何受到LON的调节以及LON介导的蛋白水解本身如何控制的几个途径存在重大差距。这些问题即使在诸如铜绿假单胞菌和花椰菜菌的良好模型生物中仍然存在。在铜绿假单胞菌中,已知LON会影响许多途径,但很少有人知道底物。此外,一种名为ASRA的隆隆蛋白在很大程度上没有表征,没有已知的底物。在C. crescentus中,尽管已经发现了几种底物,但尚无LON特异性调节剂。本文旨在填补其中一些差距,是三项研究的集合。在研究I中,我们使用定量蛋白质组学在铜绿假单胞菌中搜索LON底物,从而列出了假定的底物。我们通过体外测定确认了九种以前未知的底物,其中大多数是与运动相关的蛋白质。通过研究LON功能丧失突变体及其表型,我们观察到细胞分裂和运动性的缺陷,以及底物蛋白SULA的积累,SOS反应的控制下的细胞分裂抑制剂。我们对其底物进行了全球搜索,从而列出了推定的底物。通过抑制剂突变分析,我们发现LON在最佳条件下通过SULA间接调节运动性,直接通过降解鞭毛蛋白,大概是在抑制运动条件下。在研究II中,我们通过在硅和体外研究中以生化为特征,得出的结论是,它是一种活跃的蛋白酶,其功能与LON不同。通过此,我们发现Asra通过其底物QSLA(LASR的抗激活剂)调节法定人数的PQS途径。这种降解在体外抑制了ASRA的潜在调节剂,ASRA的潜在调节剂是由与Asra相邻的基因编码的ICP的蛋白质。我们还表明,在热震条件下,ASRA对于铜绿假单胞菌的存活至关重要。一起,这项研究表明,ASRA是一种重要的蛋白酶,它进化为占据铜绿假单胞菌中蛋白水解调节的不同壁ni。在研究III中,我们报道了对C. crescentus中名为Lara的新型LON调节剂的发现和生化研究,该调节剂在蛋白毒性应激下增强了LON介导的降解。我们通过体外测定法分析了其DEGRON的可转移性,并得出结论,其疏水C末端脱基龙很重要,但不足以调节LON。总而言之,我们报告了将LON与铜绿假单胞菌运动联系起来的新底物和途径,ASRA的表征调节了群体传感和热震反应,以及Lara作为C. C. C. C. c. c. c. c. c. c. c. c. c. c. cc. c. cc. c. cc. cc. cotc。。综上所述,本文中报道的研究扩展了我们对两个模型生物中LON蛋白酶的三种同源物的底物,细胞作用和调节机制的理解。这项研究的集合可能是研究细菌蛋白水解对环境和医疗保健研究的影响和潜力的宝贵资源。
1969 年,人们发现一种以前未知功能的牛红细胞蛋白具有催化超氧化物自由基歧化活性 (1-3)。这种酶,即超氧化物歧化酶,是一种金属蛋白,每分子含有 2 (1.8-2.0) 个铜原子和 2 (1.7-1.9) 个锌原子,分子量为 33,000,由两个大小相同的亚基组成 (4, 5)。从其他真核生物中纯化的铜锌歧化酶在分子量、亚基结构、氨基酸组成、铜锌含量以及对纯化所用的氯仿-乙醇混合物的稳定性方面与牛红细胞歧化酶相似 (2, 3)。细菌来源的酶代表一类独特的超氧化物歧化酶,其每个分子含有 1-2 个锰原子作为金属辅因子,对氯仿-乙醇处理不稳定,其氨基酸组成与铜锌歧化酶明显不同(2、3、6-8)。细菌酶的分子量约为 40,000,每个酶含有两个分子量为 20,000 的亚基。最近又分离出两种超氧化物歧化酶,其稳定性、纯化特性和氨基酸组成与细菌锰歧化酶相似。一种来自鸡肝线粒体(8)的超氧化物歧化酶每个分子含有 2.3 个锰原子,虽然它是四聚体,但其亚基分子量与细菌含锰酶相同。另一种是含有铁(每个分子约 1 个原子)而不是锰的,已从大肠杆菌中分离出来(9),是一种二聚体,其亚基大小相同(分子量 19,000)。已在各种需氧、厌氧和耐氧厌氧微生物中测量了超氧化物歧化酶活性水平(10)。从观察到的相关性来看,
利用细菌代谢物的免疫调节潜力为治疗各种免疫相关疾病的令人兴奋的可能性。但是,将这种潜力变成现实带来了重大挑战。本综述调查了这些挑战,重点是发现,生产,表征,稳定,配方,安全性和个人可变性限制。强调了许多代谢产物的有限生物利用度以及潜在的改进以及脱靶效应的潜力和精确靶向的重要性。此外,研究了肠道细菌代谢物与微生物组之间的复杂相互作用,强调了个性化方法的重要性。我们通过讨论宏基因组学,代谢组学,合成生物学和靶向递送系统的有希望的进步来结束,这对克服这些局限性并为细菌代谢物作为有效免疫调节剂的临床翻译铺平了希望。
