背景:治疗长距离外周神经损伤(PNI)仍然是一个重大的临床问题。基于石墨烯的支架具有细胞外基质(ECM)的特征,并且可以进行电信号,因此已研究用于修复PNI。结合电刺激(ES),应期望井的性能。我们旨在确定还原氧化石墨烯纤维(RGOF)与ES在体内对PNI修复的影响。方法:RGOF是通过一步限制的热液策略(DCH)制备的。表面特性,化学成分,样品的电气和机械性能。在体外和体内都系统地探索了RGOF的生物相容性。总共将54只Sprague-Dawley(SD)大鼠随机分为6个实验组:硅胶导管,S+ES,S+RGOFS填充管道(SGC),SGC+ES,神经自体移植物和SHAM组,用于10毫米Sciaticic缺陷。在每组SD大鼠手术后12周时在手术后再生坐骨神经的功能和组织学恢复。 结果:RGOF表现出具有出色的机械和电性能的对齐的微通道和纳米通道。 它们在体外和体内都是生物成绩。 鉴于神经系统和形态恢复,所有6组均表现出PNI修复结果。 SGC +ES组达到了与神经自体移植类相似的治疗作用(P> 0.05),其表现明显优于其他治疗组。 结论:RGOF具有良好的生物相容性与出色的电气和机械性能相结合。在每组SD大鼠手术后12周时在手术后再生坐骨神经的功能和组织学恢复。结果:RGOF表现出具有出色的机械和电性能的对齐的微通道和纳米通道。它们在体外和体内都是生物成绩。鉴于神经系统和形态恢复,所有6组均表现出PNI修复结果。SGC +ES组达到了与神经自体移植类相似的治疗作用(P> 0.05),其表现明显优于其他治疗组。结论:RGOF具有良好的生物相容性与出色的电气和机械性能相结合。免疫组织化学分析表明,在SGC+ES中,与轴突再生和血管生成相关的蛋白质的表达相对较高。与ES结合,RGOF在鼠急性伸长损伤模型中为10毫米神经间隙提供了上等运动神经恢复,表明其出色的修复能力。与自体神经移植相似的治疗作用使我们相信这种方法是治疗周围神经缺陷的一种有希望的方法,预计将来将指导临床实践。关键字:周围神经缺陷,坐骨神经损伤,功能恢复,组织工程,导电材料
突触囊泡糖蛋白 2A 的 PET 成像可以对突触进行非侵入性量化。这项首次在人体上进行的研究旨在评估最近开发的突触囊泡糖蛋白 2A PET 配体 (R)-4-(3-(18F-氟)苯基)-1-((3-甲基吡啶-4-基)甲基)-吡咯烷-2-酮 (18F-SynVesT-2) 的动力学、重测可重复性和特异性结合程度,具有快速脑动力学。方法:九名健康志愿者参加了这项研究,并在高分辨率研究断层扫描仪上用 18F-SynVesT-2 进行了扫描。五名志愿者在两天内接受了两次扫描。五名志愿者在注射左乙拉西坦(20mg/kg,静脉注射)后重新进行扫描。采集动脉血以计算血浆游离分数并生成动脉输入函数。将各个 MRI 图像与脑图谱配准以确定生成时间 - 活动曲线的感兴趣区域,这些曲线与 1 和 2 组织区室(1TC 和 2TC)模型拟合以得出区域分布容积(VT)。使用半卵圆中心(CS)作为参考区域,从 1TC VT 计算区域不可置换结合电位(BP ND)。结果:合成了 18 F-SynVesT-2,具有高摩尔活性(187 6 69 MBq/nmol,n 5 19)。注射后 30 分钟,血浆中 18 F-SynVesT-2 的母体分数为 28% ± 8%,血浆中游离分数较高(0.29 ± 0.04)。18 F-SynVesT-2 迅速进入脑部,注射后 10 分钟内 SUV 达到峰值 8。局部时间 - 活动曲线与 1TC 和 2TC 模型均能很好地拟合;但使用 1TC 模型估算 VT 更可靠。1TC VT 范围从 CS 中的 1.9 ± 0.2mL/cm 3 到壳核中的 7.6 ± 0.8mL/cm 3,绝对重测变异性较低(6.0% ± 3.6%)。局部 BP ND 范围从海马中的 1.76 ± 0.21 到壳核中的 3.06 ± 0.29。 20 分钟的扫描足以提供可靠的 VT 和 BP ND。结论:18 F-SynVesT-2 在脑中具有快速动力学、高特异性摄取和低非特异性摄取。与非人类灵长类动物的结果一致,18 F-SynVesT-2 在人脑中的动力学比 11 C-UCB-J 和 18 F-SynVesT-1 的动力学更快,并且能够在更短的动态扫描中获取有关脑血流和突触密度的生理信息。
突触囊泡糖蛋白 2A 的 PET 成像可以对突触进行非侵入性量化。这项首次在人体上进行的研究旨在评估最近开发的突触囊泡糖蛋白 2A PET 配体 (R)-4-(3-(18F-氟)苯基)-1-((3-甲基吡啶-4-基)甲基)-吡咯烷-2-酮 (18F-SynVesT-2) 的动力学、重测可重复性和特异性结合程度,具有快速脑动力学。方法:九名健康志愿者参加了这项研究,并在高分辨率研究断层扫描仪上用 18F-SynVesT-2 进行了扫描。五名志愿者在两天内接受了两次扫描。五名志愿者在注射左乙拉西坦(20mg/kg,静脉注射)后重新进行扫描。采集动脉血以计算血浆游离分数并生成动脉输入函数。将各个 MRI 图像与脑图谱配准以确定生成时间 - 活动曲线的感兴趣区域,这些曲线与 1 和 2 组织区室(1TC 和 2TC)模型拟合以得出区域分布容积(VT)。使用半卵圆中心(CS)作为参考区域,从 1TC VT 计算区域不可置换结合电位(BP ND)。结果:合成了 18 F-SynVesT-2,具有高摩尔活性(187 6 69 MBq/nmol,n 5 19)。注射后 30 分钟,血浆中 18 F-SynVesT-2 的母体分数为 28% ± 8%,血浆中游离分数较高(0.29 ± 0.04)。18 F-SynVesT-2 迅速进入脑部,注射后 10 分钟内 SUV 达到峰值 8。局部时间 - 活动曲线与 1TC 和 2TC 模型均能很好地拟合;但使用 1TC 模型估算 VT 更可靠。1TC VT 范围从 CS 中的 1.9 ± 0.2mL/cm 3 到壳核中的 7.6 ± 0.8mL/cm 3,绝对重测变异性较低(6.0% ± 3.6%)。局部 BP ND 范围从海马中的 1.76 ± 0.21 到壳核中的 3.06 ± 0.29。 20 分钟的扫描足以提供可靠的 VT 和 BP ND。结论:18 F-SynVesT-2 在脑中具有快速动力学、高特异性摄取和低非特异性摄取。与非人类灵长类动物的结果一致,18 F-SynVesT-2 在人脑中的动力学比 11 C-UCB-J 和 18 F-SynVesT-1 的动力学更快,并且能够在更短的动态扫描中获取有关脑血流和突触密度的生理信息。
b'Abstract:模块化聚酮化合物合酶(PKS)是巨型组装线,产生了令人印象深刻的生物活性化合物。然而,我们对这些巨质的结构动力学的理解,特别是酰基载体蛋白(ACP)结合的构建块的递送到酮类合酶(KS)结构域的催化位点的构建块仍然受到严重限制。使用多管结构方法,我们报告了在根瘤菌毒素PK的链分支模块中C C键形成后域间相互作用的详细信息。基于机制的工程模块的交联,使用作为迈克尔受体的合成底物底座。交联蛋白使我们能够通过低温电子显微镜(Cryo-EM)在C键形成时鉴定出二聚体蛋白复合物的不对称态。AlphaFold2预测也指示了两个ACP结合位点的可能性,其中一个用于底物加载。NMR光谱表明,在溶液中形成了瞬态复合物,独立于接头结构域,并且具有独立域的光化学交联/质谱法使我们能够查明域间相互作用位点。在C C键形成后捕获的分支PK模块中的结构见解可以更好地理解域动力学,并为模块化装配线的合理设计提供了宝贵的信息。
使用 RNA 靶向小分子治疗疾病的可能性正在成为药物发现和开发的下一个前沿。与蛋白质靶向小分子相比,与 RNA 结合的小分子的化学特性仍然相对不太清楚。为了填补这一空白,我们生成了前所未有的大量 RNA 小分子结合数据,并利用这些数据得出可用于定义富含 RNA 结合剂的化学空间区域的物理化学经验法则 - 小分子靶向 RNA (STaR) 经验法则。这些规则已应用于公开的 RNA 小分子数据集,并被发现具有很大的可推广性。此外,许多获得专利的 RNA 靶向化合物和 FDA 批准的化合物也通过了这些规则,以及包括 Risdiplam 在内的关键 RNA 结合批准药物案例研究。我们预计这项工作将大大加速对 RNA 靶向化学空间的探索,以释放 RNA 作为小分子药物靶点的潜力。
摘要:螯合剂在微电子工艺中常用于防止金属离子污染,螯合剂的配体片段在很大程度上决定了其与金属离子的结合强度。寻找具有合适特性的配体将有助于设计螯合剂以增强微电子工艺中对基底上金属离子的捕获和去除。本研究采用量子化学计算模拟十一种配体与水合态的Ni 2+ 、Cu 2+ 、Al 3+ 和Fe 3+ 离子的结合过程,用结合能和结合焓来量化金属离子与配体的结合强度。此外,我们利用前线分子轨道、亲核指数、静电势和基于分子力场的能量分解计算探讨了结合作用机制,并解释了十一种配体结合能力的差异。根据我们的计算结果,提出了有前景的螯合剂结构,旨在指导新螯合剂的设计以解决集成电路工艺中的金属离子污染问题。
出生后第一周未结合的胆红素(UB)水平与新生儿缺氧 - 缺血性脑病(HIE)的结局有关。HIE,脑磁共振成像(MRI),听力结果和神经发育结局≥1年的临床SARNAT分期用于将82名HIE患者的UB相关联。初始UB水平与乳酸水平显着相关。在I期(10.13±4.03 mg/dl,n = 34)中,峰值UB高(p <0.001),高于II阶段和III(6.11±2.88 mg/dl,n = 48)。在接受体温过低治疗的48例患者中,较高的峰值UB显着(P <0.001)与不明显的脑MRI扫描和不明显的神经发育结局相关。峰值UB在没有癫痫发作的患者中高(p = 0.015),直到1岁(6.63±2.91 mg/dl)高于癫痫发作的患者(4.17±1.77 mg/dl)。关于听力结果,有和没有听力损失的患者之间没有显着差异。出生后第一周的UB水平是临床分期,MRI发现,1岁之前出院后的癫痫发作的重要生物标志物以及≥1岁的神经发育结果。
客观的立体定向放射外科手术(SRS)是肺癌脑转移(BMS)的主要治疗方法。近年来,免疫检查点抑制剂(ICI)已应用于转移性肺癌,并有助于改善预后。作者调查了与肺癌同时ICI的SRS是否延长了总生存期(OS),改善颅内疾病控制并提高安全问题。在2015年1月至2021年12月期间,在Aizawa医院接受了肺癌BMS的SRS的方法。同时使用ICIS定义为SRS和ICI给药之间的3个月不超过3个月。基于11个潜在的预后协变量的倾向评分匹配(PSM;匹配比1:1),这两个治疗组的接收并发ICI的可能性相似。通过考虑竞争性事件,通过时间依赖性分析比较了有或没有并发ICI(ICI + SRS与SRS)的组之间的患者生存和颅内疾病控制。结果五百八十五名肺癌BM患者(494例非小细胞肺癌和91例小细胞肺癌)符合条件。93(16%)同时接受了ICIS。由PSM产生了两组,每组有89例患者(ICI + SRS组和SRS组)。初始SRS后ICI + SRS和SRS组的1年生存率分别为65%和50%,中位生存时间分别为16.9和12.0个月(HR 0.62,95%CI 0.44-0.87,P = 0.006)。2年累积神经系统死亡率分别为12%和16%(HR 0.55,95%CI 0.28-1.10,p = 0.091)。1年的颅内无进展生存率为35%和26%(HR 0.73,95%CI 0.53-0.99,p = 0.047)。2年的局部失败率为12%和18%(HR 0.72,95%CI 0.32-1.61,P = 0.43),并且2年远处的复发率为51%和60%(HR 0.82,95%CI 0.55-1.23,P = 0.34)。每组1例患者发生了严重的不良辐射事件(不良事件的常见术语标准[CTCAE 4级),在ICI + SRS组的3例患者中观察到3例CTCAE 3级毒性,在SRS组5例中(OR 1.53,95%CI 0.35-7.35-7.7.7.7,p = 0.75)。结论本研究发现,与肺癌BMS患者同时进行ICI的SRS与较长的生存率和持久的颅内疾病控制相关联,与治疗相关的不良事件无明显增加。
海洋生态学中的机器学习是彼得的技术和应用垃圾的ovreriew;布罗迪,斯蒂芬妮;科尔迪尔,特里斯坦;右Barcellos,Dogo; Devos,保罗;何塞(Jose)的费尔南德斯·萨尔瓦多(Fernandes-Salvador);我芬纳姆,詹妮弗;戈麦斯,亚历山德拉;尼尔斯的奥拉夫·汉德加德(Olav Handegard);豪厄尔(Kerry L。); Jamet,Cédric;凯尔尔(Kyrre)的Heldal Kartveit; Hassan Moustahfid;辣椒,克莱亚;政治家,迪米特里斯; Sauzède,Raphaëlle;玛丽亚索科洛娃;劳拉的Uusitaro; Van den Bulcke,毕业; TM Van Helmond,Aloysius;沃森,约旦;韦尔奇,希瑟;贝尔特兰·佩雷斯(Beltran-Perez),奥斯卡(Oscar);小杂货店,塞缪尔(Samuel); S Greenberg,David;库恩(Kühn),伯恩哈德(Bernhard); Kiko,Rainer; LO,Madiop; m lopes,鲁本斯;克拉斯的莫勒(Möller)迈克尔斯,威廉;铲子,艾哈迈德; Romagnan,Jean-Baptiste;舒切特,皮亚; Seydi,Vahid; Villathy,塞巴斯蒂安;马尔德,凯蒂尔;艾里森(Jean-Loyvier ICS)艾里森(Irisson)
SQUAMOSA 启动子结合样 (SPL) 蛋白构成了一个转录因子大家族,已知它们在生长和发育过程中起着关键作用,包括幼年到成年和营养期到生殖期的转变。这使得 SPL 成为烟草属植物精准育种的有趣靶标,例如用作重组生物工厂。我们报告了在烟草品种 K326 中鉴定出的 49 个 SPL 基因和在本氏烟草 LAB 菌株中鉴定出的 43 个 SPL 基因,根据拟南芥中的 SPL 分类,它们被分为八个系统发育组。外显子-内含子基因结构和 DNA 结合域在同源物和直系同源物之间高度保守。我们发现 30 个 NbSPL 基因和 33 个 NtSPL 基因可能是 microRNA 156 的靶标。通过 RNA-seq 分析了叶片中 SPL 基因的表达,发现不受 miR156 控制的基因通常以高水平组成性表达,而 miR156 调控的基因则表现出较低的表达,通常是发育调控的。我们选择了 N. benthamiana SPL13_1a 基因作为 CRISPR/Cas9 敲除实验的靶标。我们在此表明,完全敲除该单个基因会导致开花时间显著延迟,这一特性可用于增加重组蛋白生产的生物量。