摘要:高压直流(HVDC)输电被称为绿色能源传输技术,由于其高功率传输能力和较低的功率损耗,近年来已成为高压交流(HVAC)的一种有吸引力的替代方案。近年来,复合绝缘子在直流(DC)输电线路上的使用迅速增长,因为它们具有高疏水性并且比传统陶瓷绝缘子在污染环境中表现更好。在直流线路上运行期间,由于单向电场的作用,绝缘子容易积聚更多的污染物。潮湿条件下的污染物会使漏电流在绝缘子表面流动。聚合物绝缘子本质上是有机物,在电和环境应力的共同作用下容易老化。为了充分了解直流复合绝缘子的长期老化性能,有必要进行详细调查。为此,本文批判性地总结了世界各地在现场和实验室条件下复合绝缘子老化性能的经验。
*相应的作者:陈的钟,希利龙·李(Shilong Li)和量子跨学科信息中心的haoliang Qian,现代光学仪器的国家关键实验室,信息学院和电子工程学院,中国杭州吉亚吉大学; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和Zhejiang University,Zhejiang University的国际联合创新中心,中国314400,电子邮件:hansomchen@zju.edu.edu.cn(H。chen),shilong.li@zju.edu.edu.edu.edu.cn(S。li)https://orcid.org/0000-0002-5735-9781(H。Chen)。https://orcid.org/0000-0000-0003-4200-9479(H。Qian)海顿王,Junru niu,Qiaolu chen,Hua Shao,Hua Shao and Yihao Yang Yang and Yihao Yang,跨学科跨学科的量子信息中心中国杭州310027; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和国际联合创新中心,ZJU-UIUC研究所,Zhejiang University,Haining 314400,中国Sihan Zhao,量子跨学科信息中心,硅和高级半导体材料的国家主要实验室,以及Zhejiang省级Quintum Technology and Quinjiang Province Quantum Technology and Decection of Quantum Technology and Decection of Physical of Physics of Physics of Physics of Physics of Physics,Zhejiang,Hungjiang,khejiang,khejiang,khejiang handjiang。https://orcid.org/0000-0003-2162-734x
*相应的作者:陈的钟,希利龙·李(Shilong Li)和量子跨学科信息中心的haoliang Qian,现代光学仪器的国家关键实验室,信息学院和电子工程学院,中国杭州吉亚吉大学; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和Zhejiang University,Zhejiang University的国际联合创新中心,中国314400,电子邮件:hansomchen@zju.edu.edu.cn(H。chen),shilong.li@zju.edu.edu.edu.edu.cn(S。li)https://orcid.org/0000-0002-5735-9781(H。Chen)。https://orcid.org/0000-0000-0003-4200-9479(H。Qian)海顿王,Junru niu,Qiaolu chen,Hua Shao,Hua Shao and Yihao Yang Yang and Yihao Yang,跨学科跨学科的量子信息中心中国杭州310027; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和国际联合创新中心,ZJU-UIUC研究所,Zhejiang University,Haining 314400,中国Sihan Zhao,量子跨学科信息中心,硅和高级半导体材料的国家主要实验室,以及Zhejiang省级Quintum Technology and Quinjiang Province Quantum Technology and Decection of Quantum Technology and Decection of Physical of Physics of Physics of Physics of Physics of Physics,Zhejiang,Hungjiang,khejiang,khejiang,khejiang handjiang。https://orcid.org/0000-0003-2162-734x
*相应的作者:陈的钟,希利龙·李(Shilong Li)和量子跨学科信息中心的haoliang Qian,现代光学仪器的国家关键实验室,信息学院和电子工程学院,中国杭州吉亚吉大学; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和Zhejiang University,Zhejiang University的国际联合创新中心,中国314400,电子邮件:hansomchen@zju.edu.edu.cn(H。chen),shilong.li@zju.edu.edu.edu.edu.cn(S。li)https://orcid.org/0000-0002-5735-9781(H。Chen)。https://orcid.org/0000-0000-0003-4200-9479(H。Qian)海顿王,Junru niu,Qiaolu chen,Hua Shao,Hua Shao and Yihao Yang Yang and Yihao Yang,跨学科跨学科的量子信息中心中国杭州310027; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和国际联合创新中心,ZJU-UIUC研究所,Zhejiang University,Haining 314400,中国Sihan Zhao,量子跨学科信息中心,硅和高级半导体材料的国家主要实验室,以及Zhejiang省级Quintum Technology and Quinjiang Province Quantum Technology and Decection of Quantum Technology and Decection of Physical of Physics of Physics of Physics of Physics of Physics,Zhejiang,Hungjiang,khejiang,khejiang,khejiang handjiang。https://orcid.org/0000-0003-2162-734x
最近发现的高温超导镍的双层结构la 3 ni 2 o 7为研究相关性和超导性提供了一个新的平台。从双层哈伯德模型开始,我们表明,由于Hubbard的相互作用和大型层间耦合,粘合带形成了分子莫特绝缘子极限。这个分子莫特绝缘子从转移到抗抗议带的电子中以较弱的层间偶联强度自载。自掺杂的分子莫特绝缘子类似于在铜层中研究的掺杂的莫特绝缘子。我们提出的LA 3 Ni 2 O 7是一种自掺杂的分子莫特绝缘子,其分子mott限制是由两个近两个退化的抗对称d x 2-y 2和d z 2轨道形成的。较高能量对称d x 2-y 2轨道的部分职业导致自兴奋剂,这可能导致LA 3 Ni 2 O 7中的高温超导性。
图1(a)手性绝缘体和金属的键合系统。手性绝缘子上的温度梯度会产生从手性绝缘体到金属的旋转电流。 (b)磁旋转效果的示意图。 (c)手性绝缘体中的声子分散。
如今,材料科学正在通过利用扰动技术来研究其动力反应,从而朝着对非平衡状态的材料的理解和控制。 从这个角度来看,超时光脉冲的使用似乎是一种相关方法,因为它可以选择性地解决固态系统,更尤其是电子的不同程度的自由度。 这种方法可以帮助解读电子相关性引起的物理现象,并补充一种更传统的方法,其中在热力学平衡下研究了材料的相图。 在这里,我们结合了飞秒光谱光谱和高压设置,以监视v 2 O 3薄纤维在压力驱动的绝缘子到金属过渡的超平衡光响应。 实验结果表明,在V 2 O 3薄片中使用相干声子作为热力学相标记的可能性。 此外,超快相干声子模式(1 g字符)的频率行为似乎反映了晶格和电子自由度之间的强耦合在临界压力周围的频率下方的明显下降的晶格和电子自由度之间的强烈耦合。如今,材料科学正在通过利用扰动技术来研究其动力反应,从而朝着对非平衡状态的材料的理解和控制。从这个角度来看,超时光脉冲的使用似乎是一种相关方法,因为它可以选择性地解决固态系统,更尤其是电子的不同程度的自由度。这种方法可以帮助解读电子相关性引起的物理现象,并补充一种更传统的方法,其中在热力学平衡下研究了材料的相图。在这里,我们结合了飞秒光谱光谱和高压设置,以监视v 2 O 3薄纤维在压力驱动的绝缘子到金属过渡的超平衡光响应。实验结果表明,在V 2 O 3薄片中使用相干声子作为热力学相标记的可能性。此外,超快相干声子模式(1 g字符)的频率行为似乎反映了晶格和电子自由度之间的强耦合在临界压力周围的频率下方的明显下降的晶格和电子自由度之间的强烈耦合。
绝缘子是输电线路的重要设备,绝缘子覆冰会严重影响输电线路的稳定运行,因此绝缘子覆冰状态监测对电力系统的安全稳定运行具有重要意义。因此,本文提出了一种面向前端覆冰监测装置的轻量级绝缘子覆冰厚度智能识别方法。该方法融合残差网络(ResNet)与特征金字塔网络(FPN)构建多尺度特征提取网络框架,使浅层特征与深层特征融合,减少信息损失,提高目标检测精度。然后采用全卷积神经网络(FCN)对覆冰绝缘子进行分类与回归,实现覆冰厚度的高精度识别。最后,通过模型量化对所提方法进行压缩,减少模型的大小和参数,以适应计算资源有限的结冰监测终端,并在边缘智能芯片上验证了该方法的性能,并与其他经典方法进行了比较。
半导体表面上的原子单层代表了二维极限的新兴功能量子材料 - 从超导体和莫特绝缘体到铁电和量子旋转厅绝缘子的范围。indenene是iDenene的iDenene,含量约为120 MeV的im依的三角形单层是一种量子自旋霍尔绝缘子,其微米尺度的SIC上的显式外延生长(0001)使其在技术上具有相关性。然而,它对室温旋转的适合性受到空气中拓扑特征的不稳定的挑战。必须制定一种在现场加工和装置制造过程中保护indenene拓扑性质的策略。在这里,我们表明,将泛烯烯酮插入到外延石墨烯中,可以有效地保护氧化环境,同时保留完整的拓扑特征。我们的方法开放了一个现有实验机会的丰富领域,启动单层量子旋转厅绝缘子,以实现逼真的设备制造并访问拓扑保护的边缘通道。