*相应的作者:陈的钟,希利龙·李(Shilong Li)和量子跨学科信息中心的haoliang Qian,现代光学仪器的国家关键实验室,信息学院和电子工程学院,中国杭州吉亚吉大学; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和Zhejiang University,Zhejiang University的国际联合创新中心,中国314400,电子邮件:hansomchen@zju.edu.edu.cn(H。chen),shilong.li@zju.edu.edu.edu.edu.cn(S。li)https://orcid.org/0000-0002-5735-9781(H。Chen)。https://orcid.org/0000-0000-0003-4200-9479(H。Qian)海顿王,Junru niu,Qiaolu chen,Hua Shao,Hua Shao and Yihao Yang Yang and Yihao Yang,跨学科跨学科的量子信息中心中国杭州310027; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和国际联合创新中心,ZJU-UIUC研究所,Zhejiang University,Haining 314400,中国Sihan Zhao,量子跨学科信息中心,硅和高级半导体材料的国家主要实验室,以及Zhejiang省级Quintum Technology and Quinjiang Province Quantum Technology and Decection of Quantum Technology and Decection of Physical of Physics of Physics of Physics of Physics of Physics,Zhejiang,Hungjiang,khejiang,khejiang,khejiang handjiang。https://orcid.org/0000-0003-2162-734x
*相应的作者:陈的钟,希利龙·李(Shilong Li)和量子跨学科信息中心的haoliang Qian,现代光学仪器的国家关键实验室,信息学院和电子工程学院,中国杭州吉亚吉大学; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和Zhejiang University,Zhejiang University的国际联合创新中心,中国314400,电子邮件:hansomchen@zju.edu.edu.cn(H。chen),shilong.li@zju.edu.edu.edu.edu.cn(S。li)https://orcid.org/0000-0002-5735-9781(H。Chen)。https://orcid.org/0000-0000-0003-4200-9479(H。Qian)海顿王,Junru niu,Qiaolu chen,Hua Shao,Hua Shao and Yihao Yang Yang and Yihao Yang,跨学科跨学科的量子信息中心中国杭州310027; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和国际联合创新中心,ZJU-UIUC研究所,Zhejiang University,Haining 314400,中国Sihan Zhao,量子跨学科信息中心,硅和高级半导体材料的国家主要实验室,以及Zhejiang省级Quintum Technology and Quinjiang Province Quantum Technology and Decection of Quantum Technology and Decection of Physical of Physics of Physics of Physics of Physics of Physics,Zhejiang,Hungjiang,khejiang,khejiang,khejiang handjiang。https://orcid.org/0000-0003-2162-734x
*相应的作者:陈的钟,希利龙·李(Shilong Li)和量子跨学科信息中心的haoliang Qian,现代光学仪器的国家关键实验室,信息学院和电子工程学院,中国杭州吉亚吉大学; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和Zhejiang University,Zhejiang University的国际联合创新中心,中国314400,电子邮件:hansomchen@zju.edu.edu.cn(H。chen),shilong.li@zju.edu.edu.edu.edu.cn(S。li)https://orcid.org/0000-0002-5735-9781(H。Chen)。https://orcid.org/0000-0000-0003-4200-9479(H。Qian)海顿王,Junru niu,Qiaolu chen,Hua Shao,Hua Shao and Yihao Yang Yang and Yihao Yang,跨学科跨学科的量子信息中心中国杭州310027; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和国际联合创新中心,ZJU-UIUC研究所,Zhejiang University,Haining 314400,中国Sihan Zhao,量子跨学科信息中心,硅和高级半导体材料的国家主要实验室,以及Zhejiang省级Quintum Technology and Quinjiang Province Quantum Technology and Decection of Quantum Technology and Decection of Physical of Physics of Physics of Physics of Physics of Physics,Zhejiang,Hungjiang,khejiang,khejiang,khejiang handjiang。https://orcid.org/0000-0003-2162-734x
是由于最近在扭曲的双层WSE 2中发现超导性的动机,我们在Moiré超级峰值的连续模型的框架中分析了该系统中的相关物理学。在系统的微调极限下使用对称性,当考虑到有限的带宽,位移场和内部电位的相位扰动时,我们确定强耦合接地状态及其命运。我们对超导不稳定性进行了分类,并采用了类似自旋的特性模型,研究了与这些绝缘颗粒孔阶的接近性的超导不稳定。这表明只有一个相邻的间隔相干阶段(具有零或有限波矢量)自然与观察到的超导状态是一致的,我们表明,这在非平凡带拓扑的影响至关重要。取决于细节,超导体将是淋巴结或手性凹陷状态,而包括电子 - 光子耦合将导致完全间隙的,时间逆转的对称配对状态。
我们看到了以非零搅拌数为特征的Haldane模型或Chern绝缘子,并且绝缘子的特征是破碎的时间逆向对称性。系统中没有时间逆转对称性,这是我们提到的第二个邻居复杂跳跃所引起的,这是Haldane的这张照片,后来在2004年至2005年左右,这是Charlie Kane和Mele,他们已经知道,他们已经知道,可以恢复时代不变性,并且可以恢复其他胰岛素,这将是一个跨媒介,这是可以恢复时代的不变性。实际上,他们意识到的是非常深刻的,如果我们在系统中包括自由度的自由度,而不是我们一直在谈论的伪旋转器,那么我们到目前为止一直在谈论的伪旋转器,那么有可能恢复丢失的时间逆转对称性。当然,系统不会有Chern号,也不会称为Chern绝缘子,但它将是另一种绝缘体,它被称为量子旋转厅绝缘子,这就是我们所看到的。So, Kane and Mele they proposed this model which is known as the Kane Mele model and these are the papers that you see that which were published in 2005 in the physical review letters by both Kane and Milley the one of them is called as the quantum spin Hall effect in graphene which they realized that because along with the spin orbit coupling term there is the Hamiltonian respects all symmetries of that of graphene.因此,它很可能会在石墨烯中存在,然后他们在同年写了另一篇论文,或者比下一篇论文提前了,该论文说的是Z2拓扑顺序和量子旋转厅效应。
光子平台在均衡(P),时间反转(T)和二元性(D)下不变,可以支持类似于具有保守自旋的时间反向不变Z 2电子系统中的拓扑阶段。在这里,我们证明了基本的旋转阶段对非省力效应的弹性,尤其是物质耗散。我们确定非热,pd -Ampricric和相互光子绝缘子属于两个拓扑上不同的类别。我们的分析侧重于PD-对称和相互平行的板波导(PPW)的拓扑。我们发现标记拓扑相变的板中的临界损失水平。发现PT D-对称系统的哈密顿量由具有公共带隙的凯恩 - 梅勒型哈密顿量的无限直接总和组成。这种结构导致波导的拓扑充电是由于粒子孔对称性而导致的整数不良总和。该系列的每个组件对应于自旋极化边缘状态。我们的发现提出了拓扑光子系统的独特实例,该实例可以在其带隙中容纳有限数量的边缘状态。
最终,LAPP 长棒绝缘子体现了电气绝缘子技术的飞跃,将数十年的行业经验与创新设计和材料科学相结合。它们进入市场不仅仅是绝缘子技术的一次进化——它向公用事业公司及其客户保证,电力传输的未来比以往任何时候都更加光明、更加安全和更加可靠。
记录的版本:该预印本的一个版本于2024年6月3日在自然材料上发布。请参阅https://doi.org/10.1038/s41563-024-01910-3。
我们在几何沮丧的三角形晶格中研究了费米子莫特绝缘子,这是一种用于研究旋转液体和自发时间转换对称性破坏的范式模型系统。我们的研究证明了三角形莫特绝缘子的制备,并揭示了所有最近邻居之间的抗磁性自旋旋转相关性。我们采用真实空间的三角形几何量子气体显微镜来测量密度和自旋可观测物。将实验结果与基于数值链接群集扩展和量子蒙特卡洛技术的计算进行了比较,我们证明了沮丧的系统中的热度法。我们的实验平台引入了一种替代方法,用于沮丧的晶格,为未来研究外来量子磁性的研究铺平了道路,这可能导致哈伯德系统中量子自旋液体的直接检测。
拓扑绝缘子和超导体支持扩展的表面状态,以防止静态疾病的本地化作用。具体而言,在属于对称类A,AI和AII的Wigner-Dyson绝缘子中,通过光流的机理机制,延长的表面状态的带连续连接到同样的扩展式散装状态。在这项工作中,我们表明,大多数非官方 - 戴森拓扑超导体和手性拓扑绝缘子都没有这种机制。在这些系统中,精确有一个点,带有延伸状态,频段的中心e¼0。远离它,状态是空间定位的,也可以通过添加空间局部电位来制作。将AIII类和蜿蜒数量ν¼1中的三维绝缘子作为范式案例研究,我们讨论了这种现象背后的物理原理及其方法论和应用后果。尤其是我们表明,在表面状态描述中的低能量dirac近似可能是危险的,因为它们倾向于掩盖本地性现象。我们还确定了根据浆果曲率定义的标志物是晶格模型中状态定位程度的度量,并通过广泛的数值模拟来支持我们的分析预测。作为我们研究的一部分,我们确定了可能区分运输或隧道光谱中这些不同替代方案的可能实验特征。这项工作的一个主要结论是,非官方 - 迪森拓扑绝缘子的表面现象学比其Wigner-Dyson兄弟姐妹的表面现象学得多,极限限制是光谱范围的量子临界临界临界)所有状态的量子批判性地定位,除了在E¼0关键点外。