●教师/学校秘书应通过AESOP/FRANTLINE系统要求获得认证的代替教师。www.aesoponline.com●登录前线www.aesoponline.com,并按照下面的说明在eesop/Frontline中输入缺席。●输入您缺席的日期。●进入缺席时,如果需要替代,请选择“是,需要替代”●输入缺席的原因:“疾病,PB,PN等”。●由于将实际上/远程学习进行指导,因此RUSD老师必须将课程计划上传到代替教师的eesop/Frontline门户网站●这是您将课程计划上传到代替教师的eesop/Frontline Portal的方式:●准备在Aesop/Frontline中创建课程,请按照pdf附件来节省课程。●单击“选择文件”(请参阅下图)选择当天的PDF课程计划,然后上传文件。●凭证技术员,Jewel Bundy将确保已分配的替代品已经在Google教室接受过培训。
B.讨论和可能批准对UCR计划退款政策的更改 - UCR财务小组委员会主席兼UCR存款经理进行讨论和可能的董事会行动UCR财务小组委员会主席将介绍Finance Submistee在2025年2月19日,会议上批准的UCR退款政策的拟议更改,并批准了Finance Revud Read Colity。财务小组委员会建议UCR计划委员会采用这些更改,UCR计划委员会可以采取行动批准对UCR计划退款政策的更改。
实现统一的单眼3D对象检测,包括室内和室外场景,在机器人导航等应用中非常重要。然而,涉及各种数据方案来训练模型引起了挑战,因为它们的特性显着不同,例如,二 - 几何特性和异质域分离。为了应对这些挑战,我们根据鸟类的视图(BEV)检测范式建立了一个检测器,在该检测范式中,当采用多个数据方案以训练检测器时,明确的特征投影有利于对几何学学习模棱两可。然后,我们将经典的BEV检测体系结构分为两个阶段,并提出了不均匀的BEV网格设计,以处理由上述Challenges引起的收敛不稳定。此外,我们开发了稀疏的BEV功能策略,以降低计算成本和处理异质域的统一操作方法。将这些技术结合起来,得出了一个统一的检测器Unimode,它超过了富有挑战性的Omni3D数据集(一个大规模的数据集(一个室内和室外场景))的先前最先进的AP 3D,揭示了Bev bev tor tor tor tor tor tor tor unified 3D对象的第一个成功概括。
在动态行业的跳动心中,我们建立了更多的联系,并且在批判性地使它们计算。从扩大我们的“进入”活动和会议到发展在线社区并提供支持数据的营销解决方案,我们通过突破机会,可持续性和增长的界限来激活更多潜力。
为方便世界各地的游客入境,卡塔尔旅游局周日以新形式重新推出 Hayya 平台,并立即生效。从现在起,新的 Hayya 平台及其智能手机应用程序将成为所有前往卡塔尔的旅游和商务签证的单一门户。这将统一游客、海湾合作委员会居民和与海湾合作委员会公民一起旅行的同伴的签证流程。需要签证才能进入卡塔尔的游客可以通过 Hayya 平台 www.hayya.qa 或通过智能手机上的应用程序申请,并参观 2023 年阿拉伯旅游之都多哈。此外,Hayya 持有者将享受无缝旅行和进入卡塔尔的连接,因为 Hayya 将启用哈马德国际机场的电子门入境。对于那些通过阿布萨姆拉边境陆路进入卡塔尔的游客,Hayya 平台将提供预登记选项,以便车辆更快入境,让游客在卡塔尔的周末度假或长期逗留更加顺利和愉快。对于海湾合作委员会 (GCC) 国民,该平台提供为同伴申请入境许可的选项。Hayya 平台还提供其他服务,帮助游客完善逗留,包括地图、交通选择、优惠和当前活动。最新发展
对离子在半导体中产生的电离径迹的产生和传输进行 TCAD 模拟与可靠性以及辐射探测器的设计息息相关。具体而言,可靠性应用侧重于模拟在测试半导体元件是否易受软错误(逻辑器件、存储器,例如 [1] )和单粒子烧毁(功率器件,例如 [2] )影响时发生的瞬态现象。主要的 TCAD 工具已经包含模型和程序(例如 [3] ),但它们存在一些实际限制,例如仅限于单一类型的离子、有效能量范围的限制以及仅适用于硅的校准。此外,现有模型在数值上比较僵化,不易针对其他类型的离子、半导体和能量范围进行校准。本文提出了一个基于物理导向的 Crystal-Ball 函数 [4] 的半导体中低能离子沉积电荷的统一模型。特别关注能量范围分别为 0 – 10 MeV 和 0 – 160 MeV 的 α 粒子和质子。与常用模型相比,这种选择具有几个优势。特别是,α 粒子和质子使用相同的建模函数。此外,与现有解决方案相比,所提出的模型使用的校准参数更少,数值条件良好,并且其校准参数更透明,因为它们与可测量的物理量相关。最后,所提出的模型可以轻松扩展到不同的半导体和离子类型。
即使在井关闭后,也确保责任的潜力,因此有助于阻止闭合前的错误,并确保没有激励所有者和运营商来削减拐角处,例如使用更便宜,较弱的材料,而对长期后果却很少考虑。它还确保没有激励所有者和运营商不断向相关的监管机构提供草率或不完整的信息,这可能会将发现推迟到关闭井后。此外,如果需要补救,所有者和运营商通常都可以根据自己对自己的井拥有的优越知识来快速补救监管问题。5
该策略阐明了欧洲机器人界的集体愿景。它借鉴了来自欧洲境内的多种信息来源,来自欧洲主题小组,研讨会和市场研究,从跟踪全球机器人技术的进步以及与其他协会和组织的合作。它提出了一系列建议,内容涉及公共和私人组织应如何努力确保欧洲的机器人技术在中长期内具有经济和社会影响。这些关于使欧洲产品和服务能够创造附加值的中心,同时维持欧洲强大的机器人研究和创新基础。它列出了支持吸收的案例,长期关注研究并满足从机器人的角度来支持欧洲强大的创新基础设施的基本需求。它探讨了机器人创新的途径和创新增长的方向。
数学常数(例如π,E和φ)长期以来一直被认为是天然系统中几何,生长和自组织的基础。然而,常规数学将这些数字视为独立领域的新兴特性(几何,微积分和数字理论),而不是统一框架内的内在共振状态。动态新兴系统(代码)的手性提出,这些常数不是任意的,而是在主要驱动的共振字段中作为必要的相锁定结构出现。
对齐的碳纳米管(CNT)复合材料由于其出色的机械和物理特性而引起了很大的兴趣。本文简要概述了对齐的CNT复合材料的合成方法。首先对制造排列的CNT纤维制造的三种主要方法进行了审查,包括湿旋,干旋和浮动催化剂。但是,由于其多孔结构和纤维内的CNT对齐不良,获得的CNT纤维具有有限的机械和物理性能。需要适当的处理以使纤维致密以增强其性质。然后讨论CNT纤维致密化的主要方法。为了进一步增强CNT纤维内的负载转移,始终使用聚合物浸润。综述了CNT纤维聚合物浸润的典型研究,所获得的复合材料的特性表明该复合制造方法优于常规分散方法。由于对齐的CNT复合材料通常是在长纤维或薄膜的结构中获得的,因此很难测量这些复合材料的热导率。开发了一个非晶格蒙特卡洛模型,以准确预测对齐的CNT复合材料的热导率。