摘要背景:人们尚未找到最佳方法来自动捕获、分析、组织和合并结构和功能性脑磁共振成像(MRI)数据,以最终提取相关信号,协助缺氧昏迷患者床边的医疗决策过程。我们的目标是开发和验证一种深度学习模型,以利用多模态3D MRI全脑时间序列对缺氧缺血性昏迷相关的脑损伤进行早期评估。方法:这项概念验证、前瞻性、队列研究于 2018 年 3 月至 2020 年 5 月期间在大学医院(法国图卢兹)附属的重症监护室进行。所有患者在心脏骤停后至少 2 天(4±2 天)处于昏迷状态时接受扫描。在同一时期,我们招募并纳入年龄匹配的健康志愿者。脑 MRI 量化包括来自感兴趣区域(楔前神经和后扣带皮层)的“功能数据”和全脑功能连接分析以及“结构数据”(灰质体积、T1 加权、各向异性分数和平均扩散率)。专门设计的 3D 卷积神经元网络 (CNN) 通过使用原始 MRI 指标作为输入来区分意识状态(昏迷与对照)。基于卷积滤波器研究的体素可视化方法被用于支持 CNN 结果。法国图卢兹大学教学医院伦理委员会 (2018-A31) 批准了这项研究,并获得了所有参与者的知情同意。结果:最终队列包括 29 名缺氧后昏迷患者和 34 名健康志愿者。通过结合不同的 MR 指标使用 3D CNN 成功将昏迷患者与对照区分开来。功能性 MRI 数据(尤其是后扣带皮层的静息态功能性 MRI)的准确率最高,经过 10 次重复的十倍交叉验证,测试集的准确率为 0.96(范围为 0.94-0.98)。通过多数投票策略,可以实现更令人满意的表现,这可以弥补
1 UMR CNRS 7021,实验室生物成像和病理,肿瘤信号传导和治疗目标团队,药房教职员工,74 Route du Rhin,67405,法国Illkirch 67405; quentin.fuchs@unistra.fr(q.f.); marina.pierrevelcin@etu.unistra.fr(M.P。); melissa.messe@etu.unistra.fr(M.M.); benoit.lhermitte@chru-strasbourg.fr(B.L.); monique.dontenwill@unistra.fr(M.D.)2 Strasbourg大学医院,1 AvenueMolièRe,67098法国Strasbourg 3小儿科肿瘤学,Dana Farber Institute,Boston,Boston,MA 02215,美国; Anne flance.blandin@gmail.com 4 Inserm U1258,UMR CNRS 7104,Institut degénénénétiqueet de BiologieMoléculaireet Chitule et Colleule(IGBMC),University de Strasbourg,67400 Illkirch,67400 Illkirch,France,France; papin@igbmc.fr 5 Strasbourg大学医院神经外科,法国斯特拉斯堡67098 AvenueMolièRe; higoandres.coca@chru-strasbourg.fr 6儿科学系,儿科,斯特拉斯堡大学医院,1 AvenueMolièRe,67098法国Strasbourg,法国67098 *通信 *通信:电话。: + 33-388128396;传真: + 33-388128092
摘要:多种睡眠呼吸障碍会引发反复的缺氧应激,从而可能导致认知障碍等神经系统疾病。然而,反复间歇性缺氧对血脑屏障 (BBB) 的影响尚不明确。本研究比较了两种间歇性缺氧诱导方法对 BBB 脑内皮的影响:一种是使用肼屈嗪,另一种是使用缺氧室。这些循环是在内皮细胞和星形胶质细胞共培养模型上进行的。在使用或不使用 HIF-1 抑制剂 YC-1 的情况下评估了 Na-Fl 通透性、紧密连接蛋白和 ABC 转运蛋白 (P-gp 和 MRP-1) 含量。我们的结果表明,肼屈嗪和间歇性物理缺氧逐渐改变 BBB 完整性,表现为 Na-Fl 通透性增加。这种改变伴随着紧密连接蛋白 ZO-1 和 claudin-5 浓度的降低。反过来,微血管内皮细胞上调 P-gp 和 MRP-1 的表达。在第三个周期的肼屈嗪治疗后也发现了这种改变。另一方面,第三次间歇性缺氧暴露显示 BBB 特征得以保留。此外,用 YC-1 抑制 HIF-1 α 可防止肼屈嗪治疗后出现 BBB 功能障碍。在物理间歇性缺氧的情况下,我们观察到不完全的逆转,这表明 BBB 功能障碍可能涉及其他生物学机制。总之,间歇性缺氧导致 BBB 模型发生改变,并在第三个周期后观察到适应性。
1 Rise-Health,医学科学系,健康科学学院,贝拉大学内政部,AV。Infante D. Henrique,6200-506Covilhã,葡萄牙2 CNC -UC- COIMBRA大学神经科学与细胞生物学中心3 CIBB 3 CIBB- COIMBRA大学Innovative Biomedicine for Innovative Biomedicine in Center of Coimbra University,Coimbra University,Coimbra University of Coimbra 4 Cryastaminal,Cryastaminal,Sathlababababal s.a.,Portugal
Hypoxia-inducible factor 2 α promotes protective Th2 cell responses during intestinal 1 helminth infection 2 3 Jasmine C. Labuda 1 , Tayla M. Olsen 1,2 , Sheenam Verma 1 , Samantha Kimmel 1 , Thomas H. 4 Edwards 3 , Matthew J. Dufort 3 , Oliver J. Harrison 1,4 5 6 1 Center for Fundamental Immunology, Benaroya Research美国华盛顿州西雅图研究所。7 2分子和蜂窝生物学计划,美国华盛顿州西雅图市华盛顿大学。8 3美国华盛顿州西雅图市贝纳罗亚研究所系统免疫学中心。9 4美国华盛顿州华盛顿大学华盛顿大学免疫学系。10 11通信:oharrison@benaroyaresearch.org 12 13摘要:TH2细胞必须感知并适应组织环境,以提供保护性宿主14免疫和组织修复。在这里,我们检查了促进Th2细胞15分化和功能的机制。单细胞RNA-seq 16分析来自小肠道椎板椎板的CD4 + T细胞17揭示了基因EPAS1的高表达,编码了转录因子缺氧缺氧诱导的18因子2a(HIF2α)。在体外,即使在非极化条件下,暴露于缺氧或遗传HIF2α激活也促进了Th2细胞19分化。在小鼠中,CD4 + T细胞中的HIF2α激活20在没有感染的情况下促进了肠道Th2细胞的积累,而HIF2α缺陷21受损的CD4 + T细胞介导的宿主对肠舵感感染的免疫免疫。24 25简介:肠蠕虫感染是全球最普遍的慢性感染26。我们的发现22确定了缺氧,氧调节的转录因子缺氧诱导因子2α23(HIF2α)是小肠内Th2细胞分化和功能的关键调节剂。Helminth infections are often associated with polarized “type 2” immunity, including 27 activation and accumulation of T helper 2 (Th2) cells, type-2 innate lymphoid cells (ILC2), tissue 28 basophils and eosinophils, elevated serum immunoglobulin E (IgE), alternative activation of 29 macrophages and alterations of epithelial differentiation and mucus production that统称30重塑感染的解剖部位2。免疫事件和31个组织重塑的类似级联反应引发局部组织病理学发生在过敏性疾病中,包括过敏32哮喘3。33 34指导屏障组织中Th2细胞分化的机制尚不清楚。35然而,证据支持组织微环境在建立36保护性Th2细胞分化和功能中的指导性作用,这是由染色质访问性37和/或基因表达的变化提供的,在将Th2细胞从淋巴结到本塞质体38组织4,5的TH2细胞转运后的基因表达。组织警报蛋白,包括IL-25,IL-33和TSLP是在39个屏障组织中产生的关键因素,这些因素在Helminth 40感染6,7期间共同促进2型免疫力和Th2细胞反应。在41个屏障组织中影响Th2细胞功能的组织环境中其他提示的身份仍有待鉴定。42 43缺氧诱导因子(HIF)是介导细胞的关键转录因子,对缺氧8的有机体反应4。Consisting of 3 family members, (HIF1 α , HIF2 α and HIF3 α , 45 encoded by Hif1a , Epas1 and Hif3a, respectively), HIFs are post-translationally modified in an 46 oxygen-dependent enzymatic cascade that regulates their stability, nuclear translocation, 47 binding to hypoxia-response elements (HRE) and transcription of低氧诱导基因8。48在常氧条件下,HIF蛋白通过氧气在关键的脯氨酸残基上通过氧气-49依赖性丙酰羟化酶(PHD)酶羟基氧化。通过50
摘要 缺氧越来越被认为是一种重要的生理驱动力。氧气 (O 2 ) 供应减少(例如高海拔地区的吸气性缺氧)会诱导特定的转录程序,使细胞能够适应较低的 O 2 和有限的能量代谢。这种转录程序部分受缺氧诱导因素控制,部分独立于缺氧诱导因素。值得注意的是,大量的运动认知锻炼会刺激大脑中的这一转录程序,导致与急剧增加的 O 2 需求相比,O 2 供应相对减少。我们将这种重要的需求反应性、O 2 供应相对减少称为“功能性缺氧”。功能性缺氧似乎对于持久适应更高的生理挑战至关重要,包括实质性的“大脑硬件升级”,这是高级性能的基础。缺氧诱导的大脑促红细胞生成素表达可能在这些过程中起决定性作用,可以通过重组人促红细胞生成素治疗来模仿。本文综述了吸气时氧气调节如何有助于增强大脑功能的提示。从而为利用适度吸气和功能性缺氧治疗脑部疾病患者奠定了基础。最后,本文概述了一项计划中的多步骤试点研究,该研究针对健康志愿者和第一批患者,旨在提高吸气时缺氧下运动认知训练的表现。
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2024年12月27日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2024.12.26.630451 doi:Biorxiv Preprint
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2024 年 12 月 20 日发布。;https://doi.org/10.1101/2024.12.19.629457 doi:bioRxiv preprint
新生儿缺氧缺血性脑病 (HIE) 是足月新生儿死亡和长期残疾的最常见原因。咖啡因具有抗炎作用,近几十年来一直用于新生儿重症监护室。在我们的缺氧缺血性 (HI) 脑损伤新生大鼠模型中,我们证明与载体组相比,缺氧缺血性 (HI) 脑损伤后 3 天每天服用一次咖啡因 (40 mg/kg) 可减少脑组织损失和微胶质增生。AMPK/mTOR 通路在感知脑损伤后的应激反应中起着重要作用。然而,mTOR 在 HI 相关脑损伤中的作用仍不清楚。对我们的模型中 AMPK/mTOR 通路的详细分析表明,该通路在缺氧调节的神经保护中起着关键作用,并且可受到咖啡因治疗的显著影响。使用咖啡因治疗 HI 可能为 HIE 患者提供有效的神经保护、降低死亡率并改善功能结果,特别是在迫切需要神经保护治疗的中低收入国家。
摘要 微生物学领域传统上侧重于在群体水平上研究微生物。然而,包括微流体和成像技术在内的单细胞水平方法的应用揭示了群体内的异质性,使得这些方法对于以更高的分辨率了解细胞活动和相互作用至关重要。此外,单细胞分选为从微生物群体或复杂的微生物群落中分离感兴趣的细胞开辟了新途径。这些分离的细胞可以在下游的单细胞“组学”分析中进一步研究,提供生理和功能信息。然而,由于厌氧微生物对氧气敏感,将这些方法应用于原位条件下的研究仍然具有挑战性。在这里,我们回顾了现有的在单细胞水平上分析活体厌氧微生物的方法,包括活体成像、细胞分选和微流体(芯片实验室)应用,并解决了它们在缺氧操作中遇到的挑战。此外,我们还讨论了针对厌氧菌的非破坏性成像技术的开发,例如不依赖氧气的荧光探针和替代方法。