引言肝细胞癌(HCC)是世界上第六个最常见的癌症,也是全球癌症死亡率的第三个常见原因(1)。细胞周期扰动通常与癌发生和恶性转化有关,并且是癌症的已知特征(2,3)。化学疗法是通过通过细胞毒性或靶向方式诱导程序性细胞死亡来治疗癌症超过50年的方法之一(4)。The classical cytotoxic therapies involve the use of paclitaxel (microtubule stabilizer) and palbociclib (cyclin-dependent kinase [CDK] 4 and 6 inhibitor), which have been approved by FDA for treating ovarian car- cinoma, breast carcinoma, non–small cell lung carcinoma, AIDS-related Kaposi's sarcoma (5) ,和乳房cer(6)。然而,它们对HCC的影响仍然尚不清楚,因为它们仍在II期临床试验中(紫杉醇对Palbociclib的NCT02423239和NCT04175912)(NCT01356628)。其他细胞周期抑制剂,例如Aurora激酶抑制剂(GSK1070916和AZD1152),现在正在进行临床试验,并被研究为潜在疗法(7)。然而,一些研究表明,HCC对紫杉醇建立了抵抗力(8,9),而II期临床研究表明,紫杉醇对HCC患者没有任何生存优势(10)。此外,终止了AZD1152的3项AZD1152的3个临床试验,因为AZD1152单一疗法的疗效不足以支持研究的连续性(NCT00497679,NCT00338182,and NCT00497731),这表明该细胞循环不可能是有益的。单一疗法
人类呼吸系统和循环系统紧密协作,确保向所有细胞输送氧气,这对于 ATP 生成和维持生理功能和结构至关重要。在氧气供应有限的情况下,缺氧诱导因子 (HIF) 保持稳定,并在维持细胞缺氧适应过程中发挥根本作用。HIF 最初是在研究促红细胞生成素产生调节时发现的,它影响生理和病理过程,包括发育、炎症、伤口愈合和癌症。HIF 通过增强腺苷生成和受体信号传导来促进细胞外腺苷信号传导,代表一种内源性反馈机制,可抑制过度炎症、支持损伤消退并增强缺氧耐受性。这对于涉及组织缺氧的疾病尤其重要,例如急性呼吸窘迫综合征 (ARDS),这种疾病在全球范围内带来了重大的健康挑战,而没有特定的治疗方案。因此,扩大 HIF 介导的腺苷产生和受体信号传导的药理学策略非常重要。
1。马萨诸塞州波士顿波士顿儿童医院神经病学系2。 马萨诸塞州波士顿儿童医院儿科,遗传学和基因组学系 马萨诸塞州波士顿哈佛医学院生物医学信息学系4. 美国马萨诸塞州波士顿的哈佛医学院和马萨诸塞州医学院和马萨诸塞州的健康科学与技术计划5. 霍华德·休斯医学院,雪佛兰大通,马里兰州6。 生物学和生物医学科学研究生课程,哈佛医学院,马萨诸塞州波士顿7。 Ph.D. 日本伊巴拉基塔库巴大学的人类生物学计划,日本8。 生命与环境科学研究所,杜斯库巴大学,杜斯库巴大学,日本伊巴拉基,日本†这些作者为这项工作做出了同样的贡献。 *信件:Christopher.walsh@childrens.harvard.edu; peter_park@hms.harvard.edu马萨诸塞州波士顿波士顿儿童医院神经病学系2。马萨诸塞州波士顿儿童医院儿科,遗传学和基因组学系马萨诸塞州波士顿哈佛医学院生物医学信息学系4.美国马萨诸塞州波士顿的哈佛医学院和马萨诸塞州医学院和马萨诸塞州的健康科学与技术计划5.霍华德·休斯医学院,雪佛兰大通,马里兰州6。生物学和生物医学科学研究生课程,哈佛医学院,马萨诸塞州波士顿7。Ph.D. 日本伊巴拉基塔库巴大学的人类生物学计划,日本8。 生命与环境科学研究所,杜斯库巴大学,杜斯库巴大学,日本伊巴拉基,日本†这些作者为这项工作做出了同样的贡献。 *信件:Christopher.walsh@childrens.harvard.edu; peter_park@hms.harvard.eduPh.D.日本伊巴拉基塔库巴大学的人类生物学计划,日本8。生命与环境科学研究所,杜斯库巴大学,杜斯库巴大学,日本伊巴拉基,日本†这些作者为这项工作做出了同样的贡献。*信件:Christopher.walsh@childrens.harvard.edu; peter_park@hms.harvard.edu
缺氧损伤是先天性心脏病、心肌梗死和心力衰竭等各种心血管疾病发展的关键病理因素。线粒体质量控制对于保护心肌细胞免受缺氧损伤至关重要。在缺氧条件下,线粒体稳态的破坏会导致过量活性氧 (ROS) 产生、线粒体动力学失衡,并引发氧化应激、炎症反应和细胞凋亡等病理过程。针对性干预措施旨在增强线粒体质量控制,例如辅酶 Q10 和他汀类药物,已显示出缓解缺氧引起的线粒体功能障碍的前景。这些治疗通过调节线粒体的裂变和融合、恢复线粒体的生物合成、减少 ROS 的产生和促进线粒体自噬,为缺氧相关的心血管疾病提供了潜在的治疗策略。
摘要简介:这项研究的主要目的是确定开发有效KEAP1抑制剂的潜在潜在客户。方法:在当前的研究文章中,已采用了硅内方法来发现潜在的KEAP1抑制剂。3D-QSAR是使用具有IC 50的KEAP1抑制剂的Chembl数据库生成的。选择了最好的药理,以筛选三个不同的文库,即Asinex,Minimaybridge和锌。从数据库中筛选的分子通过可药物性规则和分子对接研究过滤。对接研究后获得的最佳结合分子通过二利方法对测定物理化学性质进行毒性进行。通过分子动态模拟,研究了最佳的命中以在KEAP1腔中进行稳定。结果:分别对不同数据库进行虚拟筛选,并获得了三个导线。这些铅分子asinex 508,minimaybridgehts_01719和锌0000952883在KEAP1腔中显示出最好的结合。铅的结合复合物的分子动态模拟支持对接分析。铅(Asinex 508,minimaybridgehts_01719和锌0000952883)在100 NS模拟的KEAP1结合腔中稳定,平均RMSD值分别为0.100、0.114和0.106 Nm。结论:这项研究提出了三个铅分子作为基于高吞吐量筛查,对接和MD模拟研究的潜在KEAP1抑制剂。这些HIT分子可用于进一步设计和开发KEAP1抑制剂。这项研究提供了用于发现新型KEAP1抑制剂的初步数据。它为药物化学家打开了新的途径,以探索针对KEAP1-NRF2途径的抗氧化剂刺激分子。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年9月10日。 https://doi.org/10.1101/2024.09.10.612343 doi:Biorxiv Preprint
世界卫生组织[1]的最新版本的国际疾病及相关健康问题(国际疾病分类)[1]引入了一种新的“发展学习障碍”,而不是当前的术语:“学术技能的特定发育障碍” [2]。此类别的疾病包括:阅读障碍的发展学习障碍,通常称为阅读障碍[1]。发育阅读障碍是一种在具有平均智力和感觉能力的儿童中鉴定出的神经发育障碍。它的特征是阅读困难,包括准确和/或流体单词识别,拼写和跨不同语言的解码技能。阅读障碍被认为是一种神经发育障碍,因为它源于脑发育中的自然神经系统变化,这偏离了标准发育途径[3]。Ramus等。[4]强调,某些阅读障碍(少数族裔)的病例可能是通过非语音缺陷来解释的,例如自动性假设[5]或视觉理论[6-8]。然而,由于寻找阅读障碍的原因(领先的语音学和利基非语音学)至少有两个经验上有记录的趋势,因此应将其视为由各种原因引起的疾病。阅读是一种高度复杂,多模式的认知技能。阅读行为必须涉及涉及较低和高阶处理的大脑许多领域的协调作用。各种医疗状况会导致窒息。神经影像学研究描述了一组专门研究的大脑系统,这些脑系统专门研究构成“阅读网络”的阅读涉及的各种子技能[9,10]。这些系统中一个或多个部分的操作或相互作用的一个问题严重阻碍了阅读障碍者流利阅读的获取[11]。因此,这种复杂的系统网络可能会在整个大脑发育过程中,无论是在围绕前还是围产期时期都受到许多方面的影响。此外,已经确定遗传学在引起dys-lexia [12-14]中起着重要作用。然而,一项针对怀孕或劳动期间氧气不足的环境因素的研究也提出了一个有趣的研究领域,以发现阅读障碍的病理机理[15]。最大的围产损伤是由缺氧引起的,该缺氧定义为身体组织的氧合不足及其相关的条件[16]。这些条件可能导致不同类型的低氧事件(产前或新生儿,慢性或急性),也可能导致不同的结果[17,18]。新生儿缺氧的诊断标准是基于一组标记物,包括APGAR以下(第五分钟),需要插管或心肺复苏(CPR),脐动脉pH值以下7.00以下,以及异常的神经学标志,以及诸如低渗肌肉或吸收摄入的诸如异常的神经学标志[17]。在受影响的婴儿中,四分之一的经验深刻而持久的神经心理学后果[19],包括认知障碍,视觉运动或视觉感知问题等条件,多动症,大脑麻痹和癫痫病[20,21]。缺氧 - 缺血性脑病(HIE)是由于缺氧或缺氧剂引起的氧气剥夺而导致的脑损伤[22,23]。缺氧表示流血到达大脑的降低,而iSchemia表示流向大脑的血液流量减少。HIE的患病率估计为每1000例直播的1-8例[20,24]。一些研究强调,一些HIE患者可能患有学习障碍[21-23,25 - 27]。当然,神经系统后果的严重程度不仅取决于HIE的严重程度,还取决于所采用的治疗性干预措施。最经过精心研究的治疗方法之一是治疗性降压疗法。临床研究已经确定,治疗性冷却可改善各种急性脑损伤(包括新生儿缺氧 - 缺血)的神经系统结果[28-30]。
摘要摘要简介:这项研究的目的是评估生物反馈训练对常氧和正常的低氧条件对柔道运动员反应时间的影响。材料和方法:实验组的参与者在配备有正常可病性缺氧产生系统的实验室(LOS-HYP1/3NU,Lowoxygen Systems,Germany)的实验室中接受了THETHA/BETA1训练,在模拟高度为2500m的海拔高度(FIO 2 = 15.5.5%)。研究的每个周期包括15个培训课程。训练会持续了20分钟,每组4套4分钟,并在两者之间进行1分钟的休息。在初始阶段,参与者每隔一天接受EEG生物反馈培训。对照组遵循与实验组相同的脑电图生物反馈训练课程的频率和持续时间,并且在常氧条件下显示出相同的模式。结果:结果表明在缺氧和正常氧组之间第5、11和15次训练课程后,theta/beta比值的显着差异。此外,与常氧条件下的对照组相比,在统计学上,正态性低氧条件下的theta/beta1方案在统计学上显着改善了其复杂的反应时间。结论:调查结果表明,在体育背景下,正常bar虫缺氧条件下的神经反馈训练可能会大大提高反应技能,尤其是复杂的反应。
怀孕期间的抽象缺氧,其特征是胎儿的氧气供应不足,对胎儿发育和长期健康结果构成了重大风险。关键含义包括宫内生长限制(IUGR),早产和神经发育障碍,所有这些都强调了解决怀孕期间缺氧的重要性。胎儿适应缺氧的机制,包括心血管和代谢调整,对于缓解低氧水平的不良反应至关重要。但是,持续性缺氧可能导致严重的并发症,例如IUGR,这会增加死产和长期健康问题的风险,包括后期生活中的心血管和代谢障碍。这强调了在怀孕期间有效地管理缺氧的早期检测和干预的必要性。减轻与缺氧相关的风险,涉及定期监测,医疗干预,营养支持和生活方式修改的全面方法至关重要。一个多学科护理团队,包括产科医生,营养学家和精神卫生专业人员,可以通过合作管理和教育来增强患者的结果。关键字:缺氧,怀孕,胎儿发育,宫内生长限制(IUGR),前宾夕法尼亚