摘要 新生儿脑缺氧缺血 (HI) 是新生儿死亡和残疾的主要原因,目前唯一的治疗方法是低温疗法。深入了解促进 HI 后组织修复的途径可能有助于开发更好的治疗方法。在这里,我们研究了乳酸受体 HCAR1 在小鼠新生儿 HI 后组织修复中的作用。我们发现与野生型小鼠相比,HCAR1 基因敲除小鼠的组织再生减少。此外,神经祖细胞和神经胶质细胞的增殖以及小胶质细胞活化受损。转录组分析显示,野生型小鼠脑室下区对 HI 的转录反应强烈,涉及约 7300 个基因。相比之下,HCAR1 基因敲除小鼠表现出适度的反应,涉及约 750 个基因。值得注意的是,在 HCAR1 基因敲除中,组织修复的基本过程(如细胞周期和先天免疫)失调。我们的数据表明 HCAR1 是促进 HI 后组织再生的途径的关键转录调节因子。
乳腺癌是全球女性最常见的癌症,发病率逐年上升。乳腺癌领域的重大治疗进展带来了越来越多的治疗选择,而新生或获得性耐药仍然是一个持续的临床挑战。耐药性涉及多种机制,缺氧是众多原因之一。缺氧诱导因子-1α(HIF-1a)是一种关键的转录因子,能够调节细胞对缺氧的反应。HIF-1a 可以触发肿瘤细胞的无氧糖酵解,诱导血管生成,促进肿瘤细胞的增殖、侵袭和迁移,并导致多药耐药。本综述主要讨论了 HIF-1a 在耐药乳腺癌中的作用并强调了 HIF-1a 靶向治疗的潜力。
抽象背景人类免疫细胞,包括单核细胞衍生的巨噬细胞,可以设计用于提供促炎性细胞因子,双特异性抗体和嵌合抗原受体,以支持不同疾病环境中的免疫反应。当基因表达受组成型活性启动子调节时,慢病毒有效载荷基因表达不受管制,并且可能导致潜在的毒素含量。慢病毒编码蛋白的调节递送可能允许局部或有条件的治疗蛋白表达,以支持安全传递的,具有降低全身毒性能力的传递转移的转基因细胞。在这项研究中,我们设计了人类巨噬细胞,以表达慢病毒启动子区域中的缺氧反应元件调节的基因,以驱动仅在低氧条件下驱动有条件的慢病毒基因表达。我们测试了在缺氧条件下培养的转导的巨噬细胞,用于瞬时诱导的报告基因的表达和分泌的细胞因子Interleukin-12。在切片培养系统中,在转录和翻译中都研究了低氧调节基因的表达。最后,在皮下人性化小鼠癌症模型中评估了缺氧调节的基因表达。结果的巨噬细胞显示出有条件的和三局的慢病毒编码基因蛋白产物,包括在体外缺氧条件下IL-12。返回到常氧条件后,慢病毒有效载荷表达式返回到基础水平。报告基因在缺氧条件下上调,这表明对癌症中局部基因递送的全身工程细胞递送的实用性。结论是为表达缺氧调节的有效载荷设计的巨噬细胞的潜力,有可能在患有缺氧条件的组织中系统地和有条件地表达蛋白质。与在缺氧条件下起作用或生存不佳的免疫细胞相反,巨噬细胞保持促炎的表型,当通过条件性缺氧反应性元素调节并自然访问低氧微型环境时,可能支持持续的基因和蛋白质表达
缺氧诱导因素和氧稳态氧稳态是人类面临的最艰巨和最根本的挑战之一:为成人体内约 50 万亿个细胞中的每一个细胞持续精确地提供充足的 O 2 ,以满足其氧化磷酸化和数百种其他需要 O 2 的生化反应的代谢需求 (1)。使这一挑战更加复杂的是,全身细胞所处的组织微环境中的 O 2 水平差异巨大:气道上皮细胞暴露于 21% 的 O 2 中,而在小鼠胸腺中,记录到的中位氧分压 (pO 2 ) 为 7.6 mmHg,相当于大约 1% 的 O 2 (2)。即使在同一个器官内,组织氧合情况也会有很大差异:在肾脏中,pO 2 从外皮质的 70 mmHg 到内髓质的 10 mmHg 不等 (3)。在转录水平上,维持氧稳态的挑战由缺氧诱导因子 (HIF) 的作用来应对,这些因子会介导每个细胞转录组的重编程,以应对 O 2 可用性的降低(即缺氧)。HIF 调节氧化代谢和糖酵解代谢之间的平衡,以此来匹配 O 2 需求和可用供应(4、5),并通过激活控制红细胞生成(6、7)和血管生成(8、9)的基因转录来刺激 O 2 输送增加,从而分别增加全身和局部的 O 2 供应。在任何受到缺氧影响的细胞中,数百到数千个基因的表达都会增加或减少。例如,当 SUM159 人类乳腺癌细胞从
在离开医院后的接下来的3个月内,密切监测婴儿的皮肤很重要,因为您的婴儿可以发展“皮下脂肪坏死(SCFN)”。这是一种皮肤并发症,可能会导致孩子的血液中的钙高钙,从而导致您的婴儿病得很重,并且存在长期的肾脏问题。幸运的是,早期检测到高水平的钙。SCFN通常在几个月后自发消失,SCFN是什么样的?
缩写:HGI = 低血糖损伤;HIBI = 缺氧缺血性脑损伤 低血糖损伤 (HGI) 和缺氧缺血性脑损伤 (HIBI) 的 MRI 成像特征已得到充分证实。对于无 HIBI 的纯 HGI,一些作者已证明脑损伤以后部为主,且好发于枕叶和顶叶。1 - 4 其他研究指出,HGI 的模式可能更为广泛,并不总是局限于顶枕区。5 在部分、长期 HIBI 中,皮质破坏通常涉及动脉间前部、后部和周围 Sylvian 分水岭区以及相邻的白质。 6 - 10 与 HIBI 相关的丘脑损伤描述较少,在本研究中,我们尝试调查有记录的部分、长期 HIBI、新生儿低血糖症或联合缺氧缺血和低血糖损伤的儿童的丘脑受累情况。
新生儿缺氧缺血性脑病后神经发育受损,尤其是认知障碍,是家长、临床医生和社会关注的一大问题。本研究旨在探讨使用先进的定量脑电图分析 (qEEG) 早期预测认知结果的潜在益处,本文在 2 岁时进行了评估。一组 20 名新生儿缺氧缺血性脑病 (HIE) 婴儿出生后第一周内记录了脑电图数据。提出的回归框架基于两组不同的特征,即从加权相位滞后指数 (WPLI) 得出的图论特征和由样本熵 (SampEn)、排列熵 (PEn) 和谱熵 (SpEn) 表示的熵指标。这两组特征都是在噪声辅助多元经验模态分解 (NA-MEMD) 域内计算的。相关性分析表明,新生儿 EEG 数据中提出的特征、图属性(半径、传递性、全局效率和特征路径长度)和熵特征(Pen 和 SpEn)与 2 岁时的认知发展在 delta 频带中存在显著关联。这些特征用于训练和测试树集成(增强和装袋)回归模型。使用熵特征和增强树回归模型,最高预测性能达到 14.27 均方根误差 (RMSE)、12.07 平均绝对误差 (MAE) 和 0.45 R 平方。因此,结果表明,提出的 qEEG 特征显示了早期的大脑功能状态;因此,它们可以作为后期认知障碍的预测生物标志物,这有助于识别那些可能从早期有针对性的干预中受益的人。
摘要在金属添加剂制造中,具有高纵横比(AR)特征的几何形状通常与由热应力和其他相关构建故障引起的缺陷有关。理想情况下,将在设计阶段检测和删除过高的AR功能,以避免制造过程中不必要的故障。但是,AR是规模和方向独立的,并且在所有尺度和方向上识别特征非常具有挑战性。此外,并非所有高AR特征都像薄壁和细小的针头一样容易识别。因此,在添加剂制造过程的有问题特征检测领域的进一步发展需要进一步发展。在这项工作中,提出了基于从三角形的网格几何形状提取的两个距离指标的无量纲比率(d 1/ d 2)。基于此方法,具有不同特征的几何形状(例如薄壁,螺旋和多面体),以产生与AR相似的指标。将预测结果与典型几何的已知理论AR值进行了比较。通过将此度量与网格分割结合在一起,进一步扩展了该方法以分析具有复杂特征的几何形状。所提出的方法提供了一种强大,一般且有前途的方法,可以自动检测高AR功能并在制造前解决相关的缺陷问题。
摘要:目的:放射治疗的一个主要问题是缺氧细胞对辐射的相对抵抗力。解决这一问题的传统方法包括使用氧模拟化合物来使肿瘤细胞敏感,但这种方法并不成功。本综述介绍了旨在提高相对于正常组织的靶向和放射增敏缺氧肿瘤微环境的有效性的现代方法,并提出了放射生物学中的非靶向效应是否可以提供新的“靶点”的问题。新技术涉及纳米技术、细胞操作和医学成像等最新技术进步的整合。特别是,本综述讨论的主要研究领域包括通过 PET 成像引导碳氧呼吸的肿瘤缺氧成像、金纳米粒子、用于缺氧激活前药的巨噬细胞介导药物输送系统和自噬抑制剂。此外,本综述概述了这些方法的几个特点,包括诱导放射增敏的作用机制、相对于正常组织针对缺氧肿瘤微环境的更精确性、临床前/临床试验和未来的考虑。结论:本综述表明,四种新型肿瘤缺氧疗法提供了令人信服的证据,证明这些技术可以作为强有力的工具,提高靶向效果和相对于正常组织针对缺氧肿瘤微环境进行放射增敏。每种技术都使用不同的方式来操纵治疗比例,我们将其称为“氧合、靶向、使用和消化”。此外,通过关注新出现的非靶向和场外效应,我们发现了新的总体靶点,它们不是使缺氧细胞增敏,而是试图降低正常组织的放射敏感性。
简单总结:肿瘤缺氧被认为是与常规放射疗法耐药性相关的一个关键因素,其中X射线诱导的自由基导致DNA损伤的方式在很大程度上依赖于组织氧合。新兴的PSMA定向放射性配体疗法(RLT)利用放射性药物发射的α或β粒子杀死肿瘤细胞。与传统疗法相比,诱导的DNA损伤较少依赖于氧合状态。人们较少关注肿瘤缺氧是否会影响PSMA定向RLT的疗效。我们提出了一个组织学驱动的计算机模型来定量研究肿瘤缺氧对PSMA定向RLT(177 Lu和225 Ac)治疗结果的影响。我们的研究结果表明,缺氧是应用PSMA定向RLT需要考虑的一个因素。