引言PowerSail项目的目标是证明沉积在太阳能卫星(SPS)的超轻空间级聚酰亚胺上的无定形硅(A-SI)的潜力。ART解决方案的状态是III-V复合半导体三重连接器的PV模块,该模块的价格太高了100倍,一个数量级的级数太重,无法构建具有陆地微波能量收集基础设施的竞争性SP。尽管其功率转化效率(PCE)低于最先进的多式太阳能电池,甚至是主流晶体硅(C-SI),但太阳能的A-SI是一种需要少量材料的薄膜技术,并且适用于低成本的大区域,可与低成本的大型沉积相兼容,与廉价/柔性的辅助物兼容。此外,已经建立了一个用于模块制造的整个工业平台。
微型化是一种快速发展的方法,可用于生产非常小的电子、机械和光学产品和设备,包括计算机、半导体芯片、传感器、生物传感器、IC 和内置于车辆中的微处理器等等。如今,人们可以看到小型便携式设备,可以随时随地放在口袋中携带,其背后的原因是技术可以灵活地将组件微型化,并具有许多优点和应用。微型化不仅在电子产品中,还在纳米技术的进步中发挥着重要作用,这使得制造具有特殊功能和特性的各种结构成为可能。小尺寸和轻便性是混合微电路的优势;它们长期以来一直用于起搏器的除颤器、助听器、柔性聚酰亚胺结构和许多其他应用。便携式设备的微型化和集成化日益显著,可穿戴计算正在实现。本文旨在理解小型化的概念、其优点、缺点和应用
近年来,由于公众的巨大需求,电子产品,特别是便携式显示器、通讯和医疗设备引起了极大的研究兴趣。1,2为各种功能芯片提供机械支撑和电气互连的柔性材料在柔性电子器件的运行中起着重要作用。聚对苯二甲酸乙二醇酯、聚二甲基硅氧烷(PDMS)、聚碳酸酯、聚酰亚胺等聚合物材料因其易于使用、轻便、耐用等优点,在电子工业中被广泛使用。3 – 7然而,电子产品中使用的聚合物通常是热塑性树脂,其热稳定性较低。为了实现器件性能的不断进步,需要具有低介电常数(k)的柔性聚合物来降低互连电阻/容量延迟、串扰和功率耗散。8 – 10然而,电子产品中的典型聚合物通常具有较高的k(高于3.0),这限制了它们在未来柔性电子产品中的应用。11,12
大脑界面可以刺激神经元,造成最小的损害,并且长时间工作将是未来神经假想的核心。在此,据报道,在视觉皮层的电微刺激过程中,具有高灵活的薄聚酰亚胺柄的长期性能,具有几个小(<15μm)的电极。当在体外施加了数十亿个电脉冲时,电极表现出显着的稳定性。将设备植入小鼠的一级视觉皮层(区域V1),并训练动物以检测电气微刺激时,发现感知阈值为2-20微型剂量(μA),该阈值远低于远低于电极与andstand的最大电流。体内设备的长期功能非常出色,稳定的性能长达一年多,对脑组织的损害很小。这些结果证明了薄浮动电极对失去感觉函数的长期恢复的潜力。
进行了一项分析研究,以确定 2.7 马赫箭翼超音速巡航飞机主机翼和机身结构设计的最佳结构方法。考虑近期开始设计来评估概念。重点放在热应力、静态气动弹性、颤振、疲劳和故障安全设计、静态和动态载荷之间的复杂相互作用,以及结构布置、概念和材料变化对这些相互作用的影响。结果表明,采用钛合金 6A1-4V 的低轮廓凸珠和蜂窝夹层表面板的混合机翼结构效率最高。下部结构包括用硼-聚酰亚胺复合材料加固的钛合金翼梁帽。机身外壳由 6 ~ - 4 v 钛合金帽形加固蒙皮和框架结构组成。本报告总结了研究成果,并讨论了超音速巡航飞机设计的整体研究逻辑、设计理念和分析方法之间的相互作用。
项目的范围ISBA项目ISBA(基于气凝胶的绝缘解决方案),在Horizon 2020框架下资助,欧洲领先的研究小组开发了基于Aerogel的热隔绝缘解决方案,用于用例,从卫星到发射车辆到重新输入车辆,这些车辆由最终用户Thales Aleania Space和Ariane Group提出。应用程序分为两类:低到中等温度的应用和高温应用。气凝胶是极轻的纳米多孔材料,孔隙率高达99.98%,导致散装密度,热导率和声速非常低。基于无机和混合气凝胶和气凝胶复合材料以及基于聚酰亚胺的多层绝缘型(MLIS)的替代方案(MLIS)将用于低到中等温度的应用,而基于碳凝胶的溶液将开发出基于多层层的替代方案(MLIS),而将开发基于碳凝胶的溶液以及其他混合空气凝胶组合以及用于高温应用的溶液。
柔性和便携性。染谷隆雄教授团队在柔性太阳能电池领域做出了杰出贡献,近期他们提出了可弯曲超薄太阳能电池的概念,以透明聚酰亚胺(PI)为基底,厚度仅为1.3 mm,由于良好的适应性和抗拉能力,这类超薄有机太阳能电池显示出巨大的应用前景。13另一类重要的能源装置是柔性纳米发电机。王忠林教授课题组利用ZnO纳米线(ZnONWs)的压电特性和半导体耦合效应,首次将机械能成功地转化为电能,研制出世界上体积最小的发电机——压电纳米发电机。14–172012年,将具有不同摩擦特性的聚对苯二甲酸乙二醇酯(PET)和PI薄膜组装成第一台摩擦型纳米发电机,有效提高了装置的机电转换效率和电能输出,14
隔离器是电子设备,可向控制器传输数字信号,同时还提供电流隔离,以提供用户界面和低压电路的安全电压水平。它们具有广泛的应用,包括工业,汽车,消费者和医疗电子产品,每个应用都需要特定的最低隔离水平。隔离的基本形式由光学,电容和磁耦合提供[1]。隔离器必须通过几个监管标准才能将其发布到市场。这些包括可靠性测试,例如承受电压和电压电压以及高压耐力(HVE)。承受电压和电涌电压是相对较快的持续时间测试,但是,HVE可能需要几个月到几年才能完成[2]。目前的工作基于对磁耦合隔离器中使用的材料的隔离能力的评估。为了更好地管理隔离器的可靠性测试,最好事先优化组件材料。在这项工作中,我们讨论了处理效果对隔离器中使用的各种材料及其在电崩溃之前的行为的影响。聚酰亚胺(PI)是
摘要 — 为了确保这种新兴器件的可靠性,控制导电桥式随机存取存储器 (CBRAM) 中的细丝生长至关重要。在这里,我们证明了扫描焦耳膨胀显微镜 (SJEM) 可用于检测和精确定位工作中的交叉 CBRAM 器件中的导电细丝。基于 Pd/Al 2 O 3 /Ag 堆栈的柔性存储器件首先在低温下在聚酰亚胺基板上精心制作。这些器件在低压 (<2V) 下显示置位和复位操作,开/关比高于 10 4 。在低电阻状态下操作时,SJEM 振幅图像显示出单个导电细丝存在下的热点。在 50kHz 下提取的有效热扩散长度为 4.3µm,并且还证明了热膨胀信号与耗散的焦耳功率成正比。我们相信,所提出的程序为可靠性研究开辟了道路,可将其应用于任何基于细丝传导的存储器件系列。索引词——CBRAM、柔性电子、SJEM、长丝定位。
