C-Jun的丧失导致早期小鼠胚胎死亡,这可能是由于未能发展出正常的心脏系统。C-Jun如何调节人类心肌细胞命运仍然未知。在这里,我们将人类多能干细胞的体外分化成心肌细胞来研究C-JUN的作用。令人惊讶的是,C-Jun的敲除通过TNNT2+细胞的数量来改善心肌细胞的产生。ATAC-SEQ数据表明,C-JUN缺陷导致与心肌细胞开发有关的关键调节元件上的染色质可及性提高。CHIP-SEQ数据显示,基因敲除C-JUN增加了RBBP5和SETD1B表达,从而改善了调节心脏发生的关键基因的H3K4ME3沉积。C-Jun KO表型可以使用组蛋白脱甲基酶In- hibitor CPI-455复制,该脱甲基酶CPI-455也上调了H3K4me3水平并增加了心肌细胞的产生。单细胞RNA-seq数据定义了三个细胞分支,敲除C-JUN激活了与心脏病相关的更多调节。总而言之,我们的数据表明,C-JUN可以通过调节H3K4ME3修饰和染色质访问性来调节心肌细胞命运,并阐明C-Jun如何调节人类心脏的发育。
本文在两级价格波动和初始利润分配下调查了供应链中的最佳有序策略。通过利用Copula函数来对价格波动和不确定需求之间的复杂关系进行建模,该研究既开发了连续和离散的决策模型。提出了一种离散算法以近似最佳解决方案,其收敛严格证明。数值实验表明,利润分配比率显着影响最佳订单数量和整体供应链利润。价格波动,特别是在折扣水平上,提出了关键的挑战,需要灵活和适应性的订购策略。该研究还研究了不同的副群岛关系对最佳订购决策的影响,揭示了市场条件的变化(从中等价格敏感性对高波动性)如何影响最佳订单数量。通过检查利润分配合同的订单策略,本研究提供了有关供应链成员如何合作导航不确定市场的新观点。这些发现为经理提供了可行的见解,以减轻风险,改善协调并抓住新的机会。扩展传统模型以结合价格波动和利润分配,这项研究为供应链管理做出了理论和实践贡献,提供了强大的策略来增强供应链的弹性。
背景。胎盘是一种瞬态器官,在怀孕期间形成以支持胎儿发育并调节影响慢性疾病风险的环境线索的暴露。胎盘在许多方面支持胎儿发育,包括促进营养和氧气交换,去除有害废物产品,产生关键的激素(例如人类绒毛膜促性腺激素)以及提供免疫保护。这些功能在很大程度上是由被称为合胞素细胞和额外滋养细胞细胞的终末分化的滋养细胞执行的。尽管合成肌细胞细胞和跨性滋养细胞细胞的重要性,但仍不清楚它们如何专门支持最佳胎儿发育。目标。使用功能方法丧失来确定合成肌细胞细胞谱系发育的转录调节因子。方法。候选转录因子(TBX3,VGLL3和ATF3)使用慢病毒介导的短发蛋白RNA(SHTBX3,SHTBX3,SHVGLL3或SHATF3)使用胞质衍生的人滋养细胞干细胞中击倒。将非特异性shRNA(SHCONTROL)用作对照。转导后,使用紫霉素选择细胞,并分别通过RT-QPCR和Western印迹在转录本和蛋白质水平上确认敲低效率。通过功能和转录组评估评估了转录因子敲低对滋养细胞干细胞分化为合成型肉芽细胞的影响。结果。结论。未来的方向。与用SHControl转导的细胞相比,SHTBX3和SHVGLL3的转导在合成型细胞细胞分化后导致形态异常。 可以使用滋养细胞干细胞中的功能方法丧失来评估候选转录调节剂对合成细胞细胞谱系发育的关键贡献。 初步结果表明,TBX3和VGLL3对于建立合成型细胞细胞谱系至关重要。 然而,需要更深入的表征来识别TBX3和VGLL3调节合成细胞成分的发育的分子机制。 未来的研究将包括完成剩余的候选转录因子,ATF3,全基因组评估(例如ATAC-SEQ)的shRNA敲低,以及所有SHRNA转换的其他功能输出,例如人类绒毛膜促性腺激素的产生。在合成型细胞细胞分化后导致形态异常。可以使用滋养细胞干细胞中的功能方法丧失来评估候选转录调节剂对合成细胞细胞谱系发育的关键贡献。初步结果表明,TBX3和VGLL3对于建立合成型细胞细胞谱系至关重要。然而,需要更深入的表征来识别TBX3和VGLL3调节合成细胞成分的发育的分子机制。未来的研究将包括完成剩余的候选转录因子,ATF3,全基因组评估(例如ATAC-SEQ)的shRNA敲低,以及所有SHRNA转换的其他功能输出,例如人类绒毛膜促性腺激素的产生。
心脏病是糖尿病患者发病和死亡的主要原因,主要是由于与心肌梗死 (MI) 等缺血性损伤相关的风险。我们使用人类群体遗传数据来证明目前的高血糖生物标志物不能解释糖尿病患者心肌梗死后死亡的风险。因此,本研究系统地评估了糖尿病心血管风险背后的血糖应激。使用体内和体外模型,我们证明血糖变异性(而非单独的高血糖)是糖尿病心肌功能障碍和心肌损伤敏感性的主要风险因素。这些发现为机制和药物发现研究提供了新的临床前模型,并为管理糖尿病患者心血管结果的策略提供了信息。
光动力疗法,射频诱导的高温等。)。11,它们的超小型尺寸降低至100 nm,并且它们的高表面反应性可以与生物学环境产生显着的相互作用,可以评估它们调节细胞行为的能力或诸如细胞差异和繁殖等细胞方面的能力。12,13上面列出的不同细胞机制的控制既可以改善用于生物医学应用的创新纳米复合材料的制造,又可以促进对治疗方案的改进策略的使用,以恢复因创伤性疾病,退化性疾病或衰变而损害的组织功能。14迄今为止,已经研究了基于聚合物,金属和陶瓷的几种NP。因此,大多数研究使用包括诱导多能干细胞(IPSC)在内的多种干细胞进行。15 - 18,例如,用柠檬酸盐,壳聚糖或bronectin官能化的Au-NP能够增强人间质干细胞(MSC)和脂肪衍生的干细胞(ADSC)的差异化,并进入心肌细胞和Oste-Obte-Ormasts。19,20 AG-NP可以促进人尿液衍生的干细胞(USC)和MSC的增殖,而基于石墨烯的NPS则增强了
deta nonoates¼二乙烯胺N-二核酸酯; gsh¼谷胱甘肽; gsno¼s -Nitrosoglutathione; HASMC¼人主动脉平滑肌细胞; Huasmc¼人脐动脉平滑肌细胞; HUVEC¼人脐静脉内皮细胞; MOF¼金属有机框架;无¼一氧化氮; NP¼Nanoparpicle; pCl¼Poly(ε-丙二酮); pCl/pk¼poly(ε -caprolactone)/phos -phobetaination phobetaination jeratin; poss-pcu;多面体寡聚西锡烷烷烷基聚氨酯氨基甲酸酯; rsno¼s-亚硝基硫醇; SMC¼平滑肌细胞; Snap¼s-硝基 - N-乙酰苯胺胺; VSMC¼血管平滑肌细胞。
摘要:2型糖尿病(T2D)具有复杂的病理生理学,使疾病很难建模。我们旨在开发一种新型模型,用于在体外模拟T2D,包括高血糖,高脂血症和靶向肌肉细胞的胰岛素水平可变升高。我们研究了啮齿动物骨骼(C2C12)和心脏(H9C2)肌管中不同T2D模拟条件下不同T2D模拟条件下不同T2D模拟条件下的胰岛素耐药性(IR),细胞呼吸,线粒体形态测定法和相关功能。生理控制包括5毫米葡萄糖,甘露醇作为渗透对照。对模拟高血糖,将细胞暴露于25 mm的葡萄糖。 进一步的治疗包括胰岛素,棕榈酸酯或两者。 短期(24小时)或长期(96小时)暴露后,我们进行了放射性葡萄糖摄取和线粒体功能测定法。 使用电子显微照片评估线粒体大小和相对频率。 C2C12和H9C2细胞用胰岛素和/或棕榈酸酯和棕榈酸酯和Hg长期处理的IR显示了IR。 C2C12暴露于T2D模拟条件的肌管显示ATP连接的呼吸和备用呼吸能力显着降低,线粒体占据的细胞质区域较少,导致线粒体功能障碍。 相反,H9C2肌管表现出升高的ATP连接和最大呼吸,并增加了线粒体占据的细胞质区域,表明在T2D环境中更好地适应了压力和补偿性脂质氧化。 两种细胞系都表现出在T2D模拟治疗后的肿胀/空泡线粒体肿胀的较高分数。对模拟高血糖,将细胞暴露于25 mm的葡萄糖。进一步的治疗包括胰岛素,棕榈酸酯或两者。短期(24小时)或长期(96小时)暴露后,我们进行了放射性葡萄糖摄取和线粒体功能测定法。使用电子显微照片评估线粒体大小和相对频率。C2C12和H9C2细胞用胰岛素和/或棕榈酸酯和棕榈酸酯和Hg长期处理的IR显示了IR。 C2C12暴露于T2D模拟条件的肌管显示ATP连接的呼吸和备用呼吸能力显着降低,线粒体占据的细胞质区域较少,导致线粒体功能障碍。 相反,H9C2肌管表现出升高的ATP连接和最大呼吸,并增加了线粒体占据的细胞质区域,表明在T2D环境中更好地适应了压力和补偿性脂质氧化。 两种细胞系都表现出在T2D模拟治疗后的肿胀/空泡线粒体肿胀的较高分数。C2C12和H9C2细胞用胰岛素和/或棕榈酸酯和棕榈酸酯和Hg长期处理的IR显示了IR。C2C12暴露于T2D模拟条件的肌管显示ATP连接的呼吸和备用呼吸能力显着降低,线粒体占据的细胞质区域较少,导致线粒体功能障碍。相反,H9C2肌管表现出升高的ATP连接和最大呼吸,并增加了线粒体占据的细胞质区域,表明在T2D环境中更好地适应了压力和补偿性脂质氧化。两种细胞系都表现出在T2D模拟治疗后的肿胀/空泡线粒体肿胀的较高分数。我们稳定且可重现的T2D体外模型迅速诱导了IR,ATP连接呼吸的变化,能量表型的变化以及线粒体形态的变化,与患有T2D患者的肌肉相当。因此,我们的模型应允许研究疾病机制和潜在的新靶标,并允许筛选候选治疗化合物。
骨炎畸形(Paget's)骨质麻痹,Bulbar瘫痪Agitans精神病精神病,多发性病原体,出血性Raynaud的疾病结节病scleroderma sclerosis,amyotophrophic himotrophic sclerophic sclerophic侧面硬化,多个肌细胞增多症,多重肌细胞增强性疾病。肿瘤,恶性,脑或脊髓或周围神经。溃疡,消毒性(胃或十二指肠)(适当诊断胃或十二指肠溃疡(消化性溃疡),如果它代表了对足够的临床发现的医学上合理的解释,则应考虑确定该诊断的足够临床发现,并提供了与其他症状的抗sige症相差的诊断; (消化性溃疡)当然,应尽可能使用实验室发现来证实临床数据。
在临床应用中推进生物打印的血管移植物面临的挑战是获得足够的功能性内皮细胞和对血管生物结构至关重要的平滑肌细胞。这些细胞的准确放置对于最佳性能至关重要。组织工程,尤其是脂肪衍生的干细胞(ADSC),提供了有希望的解决方案。在这种方法中,使用VEGF-165PODS®(多面腺蛋白输送系统)在体外培养ADSC并分化为内皮细胞(DECS),而平滑肌细胞(DSMC)在原位使用TGF-β1poctir with BioOATT与BioOATT的3D Bioprint Beaster在原位区分了3D Bioprinted Weastel的外层。PODS®对分化内皮细胞(DECS)和平滑肌细胞(DSMC)的产生的影响通过流式细胞仪,免疫细胞化学染色和RT-PCR验证,并使用细胞特异性标记物以及用于细胞外胶原蛋白I和弹性蛋白的免疫标记。这证实了血管壁中的细胞保留其表型并分泌的人类外基质(ECM)成分。扫描电子显微镜(SEM)证实了血管的形态和尺寸,拉伸测试和爆发压力测试评估了机械性能。通过血液兼容性和CAM(Evo ovo shorioallantoic膜)测定法评估了体内兼容性。结果证实了具有平滑肌细胞和内皮衬里的双层血管结构的成功制造,具有足够的生理特性。血流相容性和体内CAM分析表明,血小板粘附力低,生物相容性提高和血管生成特性。这些发现表明,用于3D生物打印的ADSC和Bioink集成为制造功能性小直径血管移植物提供了一种实用解决方案。这项研究通过干细胞的组合国家,生长因子输送系统和生物打印技术来推进血管组织工程。
马西替坦 (Opsumit, ACT-064992) 是一种口服强效内皮素受体拮抗剂,可与内皮素 A 和 B 受体 (ETA 和 ETB) 结合。内皮素 (ET)-1 及其受体 (ETA 和 ETB) 介导多种效应,如血管收缩、纤维化、增殖、肥大和炎症。在 PAH 等疾病条件下,局部 ET 系统上调,并参与血管肥大和器官损伤。马西替坦对人肺动脉平滑肌细胞中的 ET 受体表现出高亲和力和持续占据性。这可防止内皮素介导的第二信使系统激活,从而导致血管收缩和平滑肌细胞增殖。 2 在 III 期临床试验(TOMORROW,NCT02932410)中,患者将每天口服一次马西替坦,剂量根据参与者的年龄(对于 < 2 岁的患者)或参与者的体重(对于 ≥ 2 岁的患者)进行调整。1