• 在 Caris Life Sciences(亚利桑那州凤凰城)使用下一代测序对 CRC(N = 15,285)、EJC(N = 3,276)和 GA(N = 2,420)肿瘤进行 DNA(592 个基因或全外显子组)和 RNA(全转录组)检测。• 通过 IHC 评估 PD-L1+ 表达(22C3:TPS ≥ 1% [CRC] 或 28-8:≥ 2+,≥ 80% [EJC,GA])。• 使用 IHC 和 NGS 组合评估缺陷错配修复/微卫星不稳定性高(-MSI,稳定:-MSS)。• GUCY2C -高(H)和 -低(L)(每百万转录本,TPM)分别针对每个分子定义的亚型定义为上四分位数和下四分位数。• 通过 QuantiSEQ 估计细胞浸润。适当时应用 Mann-Whitney U 和 χ2/Fisher 精确检验(p < .05,根据多重比较进行调整)。• 从保险索赔中获得现实世界的总生存期 (OS) 和自开始 ICI 以来的生存期,并计算分子定义的患者的 Kaplan-Meier 估计值。
1利兹风湿病研究所,利兹大学,英国利兹大学2 NIHR LEEDS生物医学研究中心,利兹教学医院NHS Trust,NHS NHS Trust,英国利兹,英国3号。英国Thames 5 Norwich练习,英国诺里奇6号卫生中心6风湿病学系,Stockport NHS基金会信托基金会,英国Stockport,英国Stockport 7 Powys教学委员会,英国Brecon,Brecon Bronllys医院8 Norwich医学院,East Anglia,East Anglia,UK 9 Norwich,UK 9 Norwich,UK 9 Norwich,PMRGCAUK,PMRGCAUK,PMRGCAUK,PMRGCAUK,INSPRAIMS NOSSES,普通医院,及其流动性疾病。风湿病学,诺森比亚医疗保健NHS基金会信托基金会,纽卡斯尔,英国泰恩河12号伦敦国王学院和盖伊和盖伊和圣托马斯宠物中心诺福克和诺里奇大学医院NHS基金会信托基金会的风湿病学系,英国诺里奇,与:Max Yates,Norwich医学院,Bob Chambion Research and Education Building,第2楼,East Anglia大学,诺里奇NR4 NR4 7UQ,英国。电子邮件:m.yates@uea.ac.uk电子邮件:m.yates@uea.ac.uk
丙酮酸脱氢酶B(PDHB)是丙酮酸脱氢酶复合物的重要组成部分,与改变肿瘤代谢和促进恶性肿瘤有关。然而,PDHB对肝细胞癌(HCC)代谢重编程的特定影响及其在肿瘤进展中的作用仍有待阐明。在我们的研究中,我们发现了HCC内PDHB表达的明显升高,与延迟的肿瘤分期,肿瘤分级升高和预后结局降低相关。PDHB过表达驱动体外和体内肿瘤的生长和转移。从机械上讲,PDHB通过与SLC2A1,GPI和PKM2的启动子区域结合,介导了代谢重编程,从而促进了糖酵解相关的基因转录,从而有助于HCC索拉非尼替尼耐药。另外,同肌固定会是PDHB的靶向抑制剂,并对HCC发挥抗肿瘤作用。在小鼠异种移植模型中,同肌苷和索拉非尼的组合比单独的索拉非尼表现出明显更好的作用。总而言之,我们的研究证实了PDHB为一种能够预测HCC肿瘤进展的致癌耐药性相关基因。PDHB和等肌苷可能是肝癌靶向和联合疗法的潜在途径。
本指南的目的是协助赞助商在整个疾病范围内治疗医疗产品(即人类药物和治疗生物学产品)的临床开发(即人类药物和治疗生物产品)。此更新的指导是FDA与各自疾病领域的疾病特定社区首次合作的结果。FDA邀请Duchenne社区(包括患者,父母和护理人员,临床医生,学术专家和行业)开发了FDA对良好指导实践规定的解释所提供的早期版本。收到2014年6月25日指南的第一次迭代后,FDA开了案卷并与DMD社区和其他专家举行了进一步的会议,从而根据2015年6月发布的监管和法定要求和其他公开数据进行了修订(请参阅2015年6月(请参阅请参阅参见) https://www.parentprojectmd.org/wp-content/uploads/2021/07/2014_community_guidance.pdf)。这些活动提供了动力,并为FDA奠定了基础,以开发自己对DMD和相关肌营养不良的行业的简化指南,这是特定稀有
这些还原版本的肌营养不良蛋白的共同点是删除了亲本蛋白的中心杆状区域和 C 末端结构域,而保留了蛋白质的基本功能结构域,特别是富含半胱氨酸 (CR) 的结构域。
摘要 转移 RNA (tRNA) 在蛋白质生物合成中起着核心作用。转录后 RNA 修饰影响 tRNA 的功能和稳定性。在这些修饰中,RNA 编辑是生命三个领域中广泛存在的 RNA 修饰。作用于 tRNA 的腺苷脱氨酶 (ADAT) 家族的蛋白质是在 20 多年前发现的。它们在 tRNA 成熟过程中催化腺苷脱氨为肌苷 (A - 到 - I) 或胞苷脱氨为尿苷 (C - 到 - U)。研究最多的例子是原核或真核 tRNA 反密码子中 tRNA 摆动位置的 TadA 或 ADAT2 / 3 介导的 A - 到 - I 转换。本综述提供了有关不同生命领域中 tRNA 的 A 到 I 和 C 到 U 编辑的详细信息,介绍了有关 DNA 编辑的 ADAT 的最新发现,最后评论了 ADAT3 基因突变与智力障碍之间的关联。
基因组编辑工具,如锌指核酸酶、转录激活因子样效应核酸酶、CRISPR-Cas 系统和 CRISPR-Cas 衍生物(胞嘧啶和腺苷碱基编辑器),已广泛应用于基因组操作,并显示出它们的治疗潜力。除了基因组编辑技术之外,RNA 碱基编辑技术也得到了开发 1 。由于 RNA 编辑是可逆的、可调控的,并且不会导致基因组的永久性改变,因此它在治疗应用中可能具有一定的优势。对于腺苷的 RNA 编辑,作用于 RNA 的腺苷脱氨酶 (ADAR) 家族的成员,如 ADAR1(异构体 p110 和 p150)和 ADAR2(参考文献 2、3),已被设计用于将腺苷 (A) 精确转化为肌苷 (I) 1 。 ADAR1/2 的催化底物是双链 RNA,ADAR1/2 的脱氨酶结构域负责 A 到 I 的 RNA 编辑 4、5。肌苷被识别为鸟苷 (G),并在随后的细胞翻译过程中与胞苷 (C) 配对 3。为了实现靶向 RNA 编辑,ADAR 蛋白(或其脱氨酶结构域 ADAR DD)已与多种 RNA 靶向模块融合,例如 λ N 肽 6 – 8、SNAP 标签 9 – 13 和 Cas13 蛋白 14。此外,可以利用带有 R/G 基序的工程向导 RNA 与异位表达的 ADAR1 或 ADAR2 蛋白偶联来实现靶向 RNA 编辑 15 – 18。然而,外源编辑酶的异位表达与几个问题有关,包括基因组和/或 RNA 转录物的大量全局脱靶编辑 19 – 23 、免疫原性 24 – 27 、致癌性 28 – 30 和递送障碍 24 。 Stafforst 团队和我们自己报告的两种 RNA 编辑技术 RESTORE 31 和 LEAPER 32 利用内源性 ADAR 对 RNA 进行可编程编辑,而无需引入
定点 RNA 碱基编辑能够实现遗传信息的瞬时和可控改变,代表了一种操纵细胞过程的最新策略,为新型治疗方式铺平了道路。虽然已经对引入腺苷到肌苷变化的工具进行了深入研究,但对胞苷到尿苷编辑的精确和可编程工具的工程设计却有些落后。在这里,我们证明,从 RESCUE-S 工具中获取的 ADAR2 腺苷脱氨酶进化而来的胞苷脱氨酶结构域在将 RNA 靶向机制从基于 Cas13 更改为基于 SNAP 标签时提供了非常高效且高度可编程的编辑。向导 RNA 化学的优化进一步允许在难以编辑的 5'-CCN 序列环境中显着提高编辑产量,从而提高了该工具的底物范围。关于编辑效率,SNAP-CDAR-S 在所有测试目标上都明显胜过 RESCUE-S 工具,并且在扰乱 β-catenin 通路方面也非常出色。 NGS 分析表明,这两种工具都存在类似、适度的全局脱靶 A 到 I 和 C 到 U 编辑。
摘要 新冠肺炎疫情已蔓延至全球,严重威胁人民生命安全和健康。新冠肺炎传染性强,死亡率高。目前尚无有效的抗病毒治疗方法,急需新药。我们采用转录分析方法,从天然产物或FDA批准的药物中发现潜在的抗病毒药物。我们发现甘草苷能显著抑制Vero E6细胞中SARS-CoV-2的复制,EC 50 = 2.39 µ M。从机制上讲,我们发现甘草苷通过模仿I型干扰素发挥抗病毒作用。甘草苷诱导的上调基因在GO类别中富集,包括I型干扰素信号通路、病毒基因组复制的负调控等。在毒性实验中,ICR小鼠以300mg / kg的剂量治疗一周,未观察到死亡。治疗后,除肝脏和血清生化指标外,所有器官指数均正常。甘草苷在传统中药甘草片中含量丰富(约0.2%质量)。综上所述,我们推荐甘草苷作为治疗COVID-19的有竞争力的候选药物。我们还期望甘草苷对其他病毒病原体(如 HBV、HIV 等)具有广泛而有效的抗病毒作用。简介 从 2019 年底开始,一种名为 SARS-CoV-2 的新型冠状病毒在世界范围内引发了肺部疾病 (COVID-19) 的爆发。它极大地威胁了全球公共卫生,并导致数万人死亡 1 。截至 5 月 2 日,全球累计病例超过 340,000 例,死亡人数超过 240,000 人。目前,一些药物被认为