放射栓塞术 (RE),也称为选择性内放射治疗 (SIRT),近年来逐渐被引入到临床的细胞减灭术中。越来越多的证据表明,RE 对各种实体的肝脏肿瘤有效,其中最突出的是肝细胞癌、结直肠癌和神经内分泌肿瘤。许多其他肿瘤实体(包括乳腺癌、胆管癌和胰腺癌)的肝转移对治疗敏感,即使对其他治疗方式(如温和栓塞、区域或全身化疗)有抵抗力。SIRT 的抗肿瘤作用与放射有关,而不是栓塞,在存活肿瘤部位选择性地获得极高的局部放射剂量,对周围正常肝组织的影响很小。RE 后的形态学变化可能会给传统的重新分期解释肿瘤活力和对治疗的真实反应带来困难。因此,功能成像,即对大多数接受治疗的肿瘤进行 18 F 氟脱氧葡萄糖正电子发射断层扫描 (计算机断层扫描) 代谢成像,被视为这方面的黄金标准,应纳入 SIRT 前后评估。为防止与强效抗肿瘤功效相关的严重毒性,细致的治疗前评估尤为重要。预测剂量的改进将有助于优化治疗和患者选择。核医学程序对于 RE 的计划、执行和监测至关重要。然而,对于这种特殊的治疗形式,必须强调患者管理的跨学科方面。随着 SIRT 从抢救指征发展到肝肿瘤疾病早期阶段的使用,以及新治疗方案和靶向疗法的出现,将 SIRT 嵌入多学科方法将变得更加重要。本文重点介绍治疗的选择、准备和执行以及治疗后监测和反应评估的程序和技术方面。Semin Nucl Med 40:105-121 © 2010 Elsevier Inc. 保留所有权利。
摘要:RASSF1A 肿瘤抑制因子是一种参与细胞信号传导的再生蛋白。越来越多的证据表明,这种蛋白质位于复杂信号网络的交叉点,该网络包括细胞稳态的关键调节器,例如 Ras、MST2/Hippo、p53 和死亡受体通路。RASSF1A 表达的丧失是实体肿瘤中最常见的事件之一,通常是由 DNA 甲基化导致的基因沉默引起的。因此,重新表达 RASSF1A 或针对其复杂信号网络的影响模块进行治疗是治疗多种肿瘤类型的一种有希望的途径。在这里,我们回顾了 RASSF1A 信号网络的主要模块以及网络失调对不同癌症类型的影响的证据。具体来说,我们总结了介导 RASSF1A 启动子甲基化的表观遗传机制以及 Hippo 和 RAF1 信号模块。最后,我们讨论了重建 RASSF1A 功能的不同策略,以及如何通过多靶向途径方法选择此网络中的可用药节点来开发新的癌症治疗方法。
摘要 针对转移信号通路(例如受体酪氨酸激酶 (RTK) 触发的通路)的靶向治疗在预防肿瘤进展方面具有良好的前景。然而,基于 RTK 的靶向治疗经常遭受耐药性,因为多种生长因子受体共同表达可能会引发补偿性次级信号传导和治疗后获得性突变。一种替代策略是操纵 RTK 信号的常见负调节剂。其中,Raf 激酶抑制蛋白 (RKIP) 是本文的重点。RKIP 可以与 Raf-1 结合,从而抑制下游丝裂原活化蛋白激酶 (MAPK) 级联。RKIP 还负向调节其他转移信号分子,包括 NF- κ B、STAT3 和 NOTCH1。一般而言,RKIP 通过结合和阻断上述通路上游关键分子的活性来实现此任务。一种新的 RKIP 相关信号传导涉及活性氧 (ROS)。在我们最近的报告中,我们发现 PKC δ 介导的 ROS 生成可能通过肿瘤启动子 12-O-十四烷酰-佛波醇-13-乙酸酯引发的 HSP60 氧化来干扰 RKIP 与热休克蛋白 60 (HSP60)/MAPK 复合物的结合。RKIP 的离开可能在两个方面影响下游 MAPK。一是触发与 MAPK 偶联的 HSP60 从 Mt→胞质溶胶转位。二是改变 HSP60 的构象,有利于胞质溶胶中上游激酶更有效地激活相关的 MAPK。值得研究的是,能够产生 ROS 的各种 RTK 是否可以通过以相同的方式影响 RKIP 来驱动转移信号。
讨论:开发用于诊断和管理恶性肿瘤的液体活检平台是一个快速发展的领域。目前使用传统肿瘤标志物的方法存在很大的局限性。在这篇综述中,我们将讨论颅内 GCT 的遗传和表观遗传特征分析,这些特征正在成为有前途的生物标志物,有助于诊断和管理颅内 GCT。各种研究表明,MAPK 通路的激活突变是颅内 GCT 的常见改变,大多数生殖细胞瘤中都可见 KIT 表达。针对 KIT 的靶向疗法的开发为生殖细胞瘤的靶向治疗带来了前景。正在考虑进行临床开发的其他治疗方式包括免疫疗法和使用免疫检查点抑制剂,尤其是在 NGGCT 中。在这篇综述中,我们将讨论目前正在开发的潜在新型疗法和临床试验。
PCODR专家审查委员会初步建议是加拿大潘纳德肿瘤学药物评论(PCODR)是由加拿大省和领土卫生部(除魁北克除外)建立的,以评估癌症药物治疗,并提出建议指导药物补偿决定。PCODR过程通过查看临床证据,成本效益和患者观点来评估癌症药物的一致性和清晰度。在考虑到合格的利益相关者的反馈意见后,Cadth专家审查委员会(PERC)将提供最终建议。必须根据Cadth网站上可用的Cadth Pan-Canadian肿瘤药物评论提供反馈。最终建议将在Cadth网站上发布,并将取代此初步建议。
抽象的脑肿瘤分割是对医疗保健中诊断和治疗计划很重要的重要步骤。大脑MRI图像是根据建议的方法在收集数据并准备进一步分析之前先进行预处理的。建议的研究介绍了一种新策略,该策略使用以生物启发的粒子群优化(PSO)算法来分割脑肿瘤图像。为了提高准确性和可靠性,可以调整分割模型的参数。标准措施等标准度量,例如精度,精度,灵敏度,jaccard索引,骰子系数,特异性,用于绩效评估,以衡量建议的基于PSO的分割方法的有效性。建议方法的总体准确性为98.5%。随后的绩效分析分别为骰子得分系数,Jaccard指数,精度,灵敏度和特异性的91.95%,87.01%,92.36%,90%和99.7%的结果提供了更好的结果。因此,此方法对于放射科医生来说可能是有用的工具,可以支持它们诊断大脑中的肿瘤。关键字 - 脑肿瘤,群智能,粒子群优化,磁共振图像。
✓ 前 500 名参与者的 10662 个数据字段 ✓ 前 200 名参与者的 57245 个数据字段 ✓ 193 种肿瘤的变异调用 ✓ 193 种肿瘤的 2370 个生物样本注释字段 ✓ 受控访问下的公开发布预计于 2023 年第四季度
基于铁的纳米材料(INM),由于其特殊的磁性,出色的生物相容性和功能,已在肿瘤诊断和治疗中已发展为强大的工具。我们在此处概述了诸如氧化铁纳米颗粒,元素掺杂纳米复合材料和铁基有机框架(MOFS)等INM如何显示多功能性,以改善肿瘤成像和治疗。在成像方面,INM提高了磁共振成像(MRI)和光声成像(PAI)等技术的灵敏度和准确性,并支持多模式成像平台的开发。关于治疗,INM在高级策略中起着关键作用,例如免疫疗法,磁性高温和协同组合疗法,这些疗法有效地克服了肿瘤诱导的耐药性并降低全身毒性。INM与人工智能(AI)和放射线学的整合进一步扩展了其精确肿瘤识别,治疗优化和扩增治疗监测的能力。INM现在将材料科学与先进的计算和临床创新联系起来,以实现下一代癌症诊断和治疗学。
摘要 表皮生长因子 (EGF) 可诱导非肿瘤大鼠肾成纤维细胞在细胞培养中发生转化表型,这些转化表型是从成年小鼠的许多非肿瘤组织(包括颌下腺、肾脏、肝脏、肌肉、心脏和大脑)中分离出来的。它们与之前描述的从肿瘤细胞中分离出来的转化生长因子 (TGF) 类似,具体如下:它们可通过酸/乙醇提取,并且是酸稳定的低分子量 (6000-10,000) 多肽,需要二硫键才能起作用,并且它们会导致非肿瘤指示细胞的锚定非依赖性生长,而这些细胞在没有它们的情况下不会在软琼脂中生长。从雄性小鼠的颌下腺中对这些 TGF 进行部分纯化,结果表明它们不同于 EGF。与之前描述的细胞外 TGF 不同,但与来自肿瘤细胞的某些细胞 TGF 一样,它们通过 EGF 增强其促进锚定非依赖性生长的能力。颌下腺 TGF 蛋白的等电点接近中性。在 Bio-Gel P-30 上进行色谱分析,然后进行高压液相色谱分析,总纯化率达到 22,000 倍。在 EGF 存在下进行测定时,最纯化的蛋白质在 1 ng/ml 的软琼脂中具有诱导生长的活性。这些数据进一步证明了肿瘤形成可能是由非肿瘤生化过程的定量而非定性改变引起的。我们最近描述了 (1) 从几种肿瘤小鼠组织(包括由莫洛尼肉瘤病毒 (MSV) 转化的成纤维细胞和最初由化学致癌物诱导的可移植膀胱癌)中分离和表征一组低分子量、酸稳定性多肽(称为转化生长因子 (TGF))。这些多肽是可通过酸/乙醇提取的细胞内蛋白质。类似的细胞外转化多肽,称为肉瘤生长因子 (SGF),是由 De Larco 和 Todaro (2) 从培养的 MSV 转化小鼠成纤维细胞的条件培养基中首次分离出来的。最近报道了几种其他细胞外转化多肽,它们来源于人类 (3) 和动物 (4) 来源的肿瘤细胞。所有这些多肽在应用于培养的未转化、非肿瘤指示细胞时都会引起以下一系列变化,这些变化为 TGF 提供了一个操作性定义:(i) 单层细胞密度依赖性生长抑制的丧失;(ii) 单层细胞过度生长;(iii) 细胞形状改变,导致指示细胞呈现肿瘤表型;(iv) 获得锚定独立性,从而能够在软琼脂中生长。未转化的非肿瘤细胞不会在软琼脂中形成逐渐生长的菌落,并且培养细胞的这种不依赖锚定的生长特性与体内肿瘤的生长具有特别高的相关性(5-7)。
摘要 - RSNA-MICCAI 脑肿瘤放射基因组学分类挑战赛[1]旨在通过对多参数 mpMRI 扫描(T1w、T1wCE、T2w 和 FLAIR)进行二元分类来预测胶质母细胞瘤中的 MGMT 生物标志物[2]状态。数据集分为三个主要队列:训练集、验证集(在训练期间使用),测试集仅在最终评估中使用。图像要么是 DICOM 格式[3],要么是 png 格式[4]。使用不同的架构来研究该问题,包括 3D 版本的 Vision Transformer (ViT3D)[5]、ResNet50[6]、Xception[7] 和 EfficientNet-b3[8]。AUC 被用作主要评估指标,结果显示 ViT3D 和 Xception 模型都具有优势,在测试集上分别达到 0.6015 和 0.61745。与其他结果相比,考虑到任务的复杂性,我们的结果被证明是有效的。通过探索不同的策略、不同的架构和更多样化的数据集可以取得进一步的改进。
