[1] Anderson NM,Simon MC。肿瘤微环境。Curr Biol,2020,30:R921-5 [2] Mao X,Xu J,Wang W等。在肿瘤微环境中癌症相关的成纤维细胞和免疫细胞之间的串扰:新发现和未来的观点。mol Cancer,2021,20:131 [3] Lv B,Wang Y,Ma D等。免疫疗法:重塑肿瘤免疫微环境。前免疫,2022,13:844142 [4] Fu T,Dai LJ,Wu Sy等。免疫微环境的空间结构策划了肿瘤免疫和治疗反应。J Hematol Oncol,2021,14:98 [5] Matsumoto Ki,Mitchell JB,Krishna MC。基于MRI,EPRI和PET的癌症/肿瘤微环境的多模式功能成像。分子,2021,26:1614 [6] Li X,Wang R,Zhang Y等。癌症免疫疗法中肿瘤相关巨噬细胞的分子成像。the Adv Med Oncol,2022,14:17588359221076194 [7] Wang JJ,Lei KF,Han F.肿瘤微环境:各种癌症治疗的最新进展。Eur Rev Med Pharmacol Sci,2018,22:3855-64 [8] Kim Ee,Youn H,Kang KW。肿瘤免疫学成像。nucl med mol成像,2021,55:225-36 [9] liu r,hu y,liu t等。在骨肉癌肿瘤微环境中,免疫细胞浸润和免疫相关基因的特征。BMC癌症,2021,21:1345 [10] Yuki K,Cheng N,Nakano M等。肿瘤免疫学的器官模型。趋势Immunol,2020,41:652-64 [11] Li T,Fu J,Zeng Z等。timer2.0用于分析肿瘤浸润的免疫细胞。核酸Res,2020,48:W509-14 [12] Li Y,Hu X,Lin R等。单细胞景观揭示了活性细胞亚型及其在胃癌肿瘤微环境中的相互作用。Theranostics,2022,12:3818-33 [13] Davis-Marcisak EF,Deshpande A,Stein-O'Brien GL等。从长凳到床边:癌症免疫疗法的单细胞分析。癌细胞,2021,39:1062-80 [14] Seeeevassen L,Bessede E,Megraud F等。胃癌:癌变研究和新的治疗策略的进展。Int J Mol Sci,2021,22:3418
术后复发是否会影响患者的后续治疗计划和存活。其中,在手术期间很难完全去除侵入上层或羊角区域的pit,并在手术后12%约58%重复出现。(在本文中,关于诊断和治疗中国经常性垂体腺瘤的专家共识的定义是在2019年的:垂体腺瘤切除后消失的症状和迹象再次出现;内分泌指数再次出现;内分泌指数再次增加了缓解标准后再次增加;,即使肿瘤被完全切除,10%〜20%也将在5到10年内复发。Tu-Mors的复发为患者带来了财务和心理负担,并降低了他们的生活质量。本文主要回顾了皮特内特在三个方面的术后复发的因素:IM的特征,病理因素和其他因素,并提出了有关PITNET临床治疗的个人建议,旨在为该疾病的临床治疗提供参考。
[摘要]肿瘤细胞通过代谢重编程适应了快速生长和分裂的需求,与正常细胞相比,具有不同的代谢特征,包括葡萄糖和氨基酸的失调,中央碳
[1]Liu Y X,Yan Q J,Zeng Z Y等。mRNA疫苗在癌症免疫疗法中的进步和前景[j]。Biochim Biophys Acta Rev Cancer,2024,1879(2):189068。[2] Zhang A,Ji Q M,Sheng X等。胃肠道肿瘤中的mRNA疫苗:免疫调节作用和免疫疗法[J]。Biomedecine Pharmacother,2023,166:115361。[3]Wolchok J.将免疫制动器放在癌症上。Cell,2018,175(6):1452-1454。 [4]Shi S J,Huang J C,Kuang Y等。 稳定性和HOPF分叉与免疫检查点抑制剂[j j j] j] Commun非线性科学Simul,2023,118:106996。 [5] Zhu C J,Wu Q,Sheng T等。 合理设计的方法来增强实体瘤治疗的CAR-T治疗[j]。 BioAct Mater,2024,33:377-395。 [6 liu C P,Wang Y C,Li L M等。 工程的细胞外囊泡及其用于癌症免疫疗法的模拟物。 J控制版本,2022,349:679-698。 [7]Liu J,Fu M Y,Wang M N等。 癌症疫苗作为有希望的免疫治疗药:平台和当前的进展[j]。 J Hematol Oncol,2022,15(1):28。 [8]GUO C Q,Manjili M H,Subjeck J R等。 治疗性癌症疫苗:过去,现在和未来[j]。 Adv Cancer Res,2013,119:421-475。 [9]TüReciö,Vormehr M,Diken M等。 靶向癌症的异质性,用个性化的新皮子疫苗[ Clin Cancer Res,2016,22(8):1885-1896。 [10 Qin X Y,Yang T,Xu H B等。Cell,2018,175(6):1452-1454。[4]Shi S J,Huang J C,Kuang Y等。稳定性和HOPF分叉与免疫检查点抑制剂[j j j] j]Commun非线性科学Simul,2023,118:106996。[5] Zhu C J,Wu Q,Sheng T等。合理设计的方法来增强实体瘤治疗的CAR-T治疗[j]。BioAct Mater,2024,33:377-395。[6 liu C P,Wang Y C,Li L M等。工程的细胞外囊泡及其用于癌症免疫疗法的模拟物。J控制版本,2022,349:679-698。[7]Liu J,Fu M Y,Wang M N等。癌症疫苗作为有希望的免疫治疗药:平台和当前的进展[j]。J Hematol Oncol,2022,15(1):28。[8]GUO C Q,Manjili M H,Subjeck J R等。治疗性癌症疫苗:过去,现在和未来[j]。Adv Cancer Res,2013,119:421-475。 [9]TüReciö,Vormehr M,Diken M等。 靶向癌症的异质性,用个性化的新皮子疫苗[ Clin Cancer Res,2016,22(8):1885-1896。 [10 Qin X Y,Yang T,Xu H B等。Adv Cancer Res,2013,119:421-475。[9]TüReciö,Vormehr M,Diken M等。靶向癌症的异质性,用个性化的新皮子疫苗[Clin Cancer Res,2016,22(8):1885-1896。[10 Qin X Y,Yang T,Xu H B等。垂死的肿瘤细胞启发
表没食子茶素没食子酸酯 (EGCG) ,是茶多酚 中最有效的活性成分,属于儿茶素类化合物。 EGCG 具有抗菌、抗炎、抗病毒、抗肿瘤等作用 [ 21 ] 。有研 究报道,在非小细胞肺癌中, EGCG 能够抑制 IFN- γ 和表皮生长因子( EGF )诱导的 PD-L1 的表达。 EGCG 和绿茶提取物能够抑制 A549 人肺癌细胞 中 JAK2/STAT1 信号通路,从而减少由 IFN-γ 诱导 的 PD-L1 mRNA 以及蛋白质的表达水平;同时通 过抑制 EGF 受体 /AKT 信号通路,使 EGF 诱导的 PD-L1 的表达降低。在腹腔注射 4- 甲基亚硝胺基 - 1- ( 3- 吡啶基) -1- 丁酮 (NNK) 诱导的小鼠肺癌模型 中,小鼠的饮用水中加入 0.3% 的绿茶提取物,可以 降低每只小鼠的平均肿瘤数目和 70% PD-L1 的阳 性细胞率。在 F10-OVA 黑色瘤细胞和肿瘤特异 性 CD3+T 细胞共培养模型中, EGCG 能够使 F10- OVA 细胞的 PD-L1 mRNA 的表达降低,并且可以 恢复肿瘤特异性 CD3+T 细胞 IL-2 mRNA 的表 达 [ 22 ] 。这些结果表明, EGCG 是 PD-L1 的有效抑制 剂,具有抑制 EGFR/Akt 和 IFNR/JAK2/STAT1 通 路的潜力。
免疫检查点分子阻断剂 ( immune checkpoint blockade , ICB ) 是肿瘤免疫治疗的有效策略之一 , 其中靶向程序 性死亡受体 -1 ( programmed death receptor-1 , PD-1 ) / 程 序性死亡配体 -1 ( programmed death-ligand 1 , PD-L1 ) 的单克隆抗体主要在 TME 中发挥调节免疫细胞功能 的作用。 CD8 + T 细胞是抗肿瘤反应中极具破坏性的 免疫效应细胞群 , 其浸润到 TME 的密度是影响免疫 检查点阻断治疗结果的预测指标 [ 18 ] 。研究表明 , PD- 1/PD-L1 检查点抑制剂与化疗药物联合使用是治疗晚 期非小细胞肺癌的有效方法 , 然而其在肝癌 、 前列腺 癌等实体肿瘤中效果并不理想 [ 19 ] 。为了增强 PD-L1 抗体免疫治疗疗效 , Li 等 [ 20 ] 开发了一种偶联抗 PD- L1 单克隆抗体和负载多西紫杉醇 ( docetaxel , DTX ) 多 功能微泡系统 , 联合超声空化效应增加肿瘤细胞的凋 亡率和 G2-M 阻滞率 , 还可以通过促进 CD8 + T 和 CD4 + T 细胞的增殖 、 降低细胞因子 VEGF 和 TGF-β 的水平来增强抗肿瘤作用。为了提高 PD-L1 抗体在 肝癌中的治疗效果 , Liu 等 [ 21 ] 设计了一种携带 PD-L1 抗体和二氢卟吩 e6 ( chlorin e6 , Ce6 ) 的靶向纳米药物 递送系统 , 该类靶向纳泡可通过 PD-L1 抗体主动靶向 作用 , 促进 Ce6 在肿瘤部位的聚集与释放 , 并通过超 声介导 Ce6 声敏效应促进肿瘤细胞凋亡 、 诱导肿瘤细 胞发生免疫原性死亡 , 同时通过 PD-L1 抗体对 PD- 1/PD-L1 信号通路的阻断促进 CD8 + T 在肿瘤组织中 浸润 , 两者协同发挥抗肿瘤免疫反应。为了增强肿瘤 内部免疫细胞渗透 , Wang 等 [ 22 ] 提出一种将 PD-L1 靶 向的 IL-15 mRNA 纳米疗法和 UTMD 结合的治疗策 略 , 通过声孔效应特异性地将 IL-15mRNA 转染到肿 瘤细胞中 , 激活 IL-15 相关的免疫效应细胞 , 同时阻 断 PD-1/PD-L1 通路 、 诱导免疫原性死亡进而启动强 大的全身免疫反应。 3.3 超声联合载药微泡调节 TME 免疫抑制状态
o良性(仅在一个地方生长;不会散布或侵入其他身体部位,而是通过按下重要器官来引起问题;通常不会复发);或o恶性肿瘤(生长,扩散并侵入其他身体部位并可以复发)癌症:一种潜在无限生长的恶性肿瘤,通过侵袭并通过转移而系统地扩展。转移:癌症从身体的一部分传播到另一部分。在病理分析下,转移性(或继发性)癌的细胞与原始(或原发性)癌的细胞相同。因此,病理学家可以确定特定部位中的癌症是主要还是次要的。例如,来自原发性肺癌的肺肿瘤的细胞看起来像肺癌细胞,而来自乳腺癌的肺肿瘤的细胞看起来像乳腺癌细胞。原因(Mayo Clinic,2022b)癌症是由细胞内DNA变化(突变)引起的。风险因素(梅奥诊所,2022b)许多癌症的特殊原因是未知的。风险因素包括:年龄65岁或以上(但可以在任何年龄段诊断)生活方式和习惯(吸烟,日晒,饮酒,肥胖,不安全的性,身体不活动等)家族史一些慢性健康状况环境暴露于化学物质,毒素,辐射等。体征和症状(Mayo Clinic,2022b)的体征和症状取决于类型,位置和阶段。(阶段是指癌症已经成长和扩散。)诊断工具(Mayo Clinic,2022a)活检和病理分析实验室测试诊断成像 - X射线,超声,CT,MRI和PET扫描等。治疗(Mayo Clinic,2022a)的治疗方法根据:癌症类型位置和阶段可能包括手术,化学疗法,免疫疗法,激素治疗,靶向药物治疗,放射治疗,干细胞移植或某些组合。
摘要高血糖是在糖尿病患者中对人体组织损害造成重要作用的主要因素,这是由氧化应激增加引起的。低 - 慢性炎症在DMT2发病机理中起重要作用,从而将糖尿病与许多一般疾病连接起来,这些疾病被认为是源自炎症机制的。具有高水平的细胞外葡萄糖将增加氧化应激,这将继续增加ROS的产生并指炎症。本研究旨在证明DMT2患者中TNF-α和IL-6水平的相关性。所使用的研究方法是观察性分析,其横截面研究设计具有非概率抽样抽样技术,并在2022年11月至12月至12月至12月至12月至12日的Muhammadiyah Roemani RSU实验室Semarang。基于59个研究结果,样品的数量显示了TNF-α水平与r = 0.435的DMT2之间的中等正相关,并且这种相关性与p = 0.001的值显着(p <0.01)。IL-6结果显示IL-6和DMT2水平之间的中等正相关,值为r = 0.467,并且该相关性与p = 0.001的值显着(p <0.01)。这项研究表明TNF-α和IL-6作为可能与DMT2发病机理相关的炎症生物标志物的重要性。这一发现可以进一步见解理解TNF-α和IL-6在DMT2开发或管理中的作用。关键字:TNF-α;白介素6;糖尿病2型;炎症
人们普遍认为肿瘤是一种由癌细胞、细胞外基质、炎症细胞、免疫细胞和其他细胞组成的复杂组织。肿瘤微环境失调可维持细胞生长、侵袭和逃避免疫监视的存活,从而促进肿瘤的侵袭性。一些饮食营养素可以改变肿瘤微环境的概念极具吸引力。许多研究表明,高脂饮食引起的肥胖会影响代谢,从而抑制抗肿瘤免疫,但氨基酸如何改变肿瘤微环境并影响肿瘤免疫仍未完全了解。事实上,不同信号通路中的氨基酸代谢及其串扰会影响癌症患者的肿瘤免疫和治疗效果。我们的综述重点介绍了氨基酸影响肿瘤微环境的机制,并发现了癌症免疫治疗的潜在药物靶点。
会发生原发性电解质异常——高钾血症、高尿酸血症和高磷血症,以及继发于高磷血症的低钙血症。这些异常可导致急性肾损伤、尿毒症和全身终末器官损伤,包括肾衰竭和肝衰竭,可能导致癫痫、心律失常和死亡。3-8 高钾血症通常是肿瘤溶解综合征中出现的第一个也是最严重的电解质异常。它对心脏和骨骼肌有不良影响,可导致心律失常或心脏骤停。在肿瘤溶解综合征的最初 12 至 24 小时内可能出现高钾血症的迹象。3,4 高磷血症和低钙血症通常同时发生。研究表明,癌细胞中的磷酸盐水平是正常细胞的四倍。 4 当血液中磷酸盐水平升高时,人体会尝试通过肾脏排出过量的磷酸盐来进行补偿。5 过量的磷酸盐会与细胞外钙结合,耗尽钙供应,导致低钙血症,并在肾小管中产生磷酸钙晶体,加重肾脏损伤。5, 7 当核酸被多次分解形成尿酸时,就会发生高尿酸血症;这种过量的尿酸不易被肾脏排出。7 人类肾脏也缺乏尿酸酶,这种酶可以将尿酸转化为更易溶解的形式以便排出。7