摘要:叶酸受体-α(FR-α)在许多上皮癌中过度表达,包括卵巢癌、子宫癌、肾癌、乳腺癌、肺癌、结肠癌和前列腺癌,但在肾脏、唾液腺、脉络丛和胎盘等正常组织中表达有限。因此,FR-α已成为向FR阳性肿瘤输送治疗剂和成像剂的有希望的靶点。已经开发了一系列基于叶酸的PET(正电子发射断层扫描)放射性药物,用于选择性靶向FR阳性恶性肿瘤。本综述概述了迄今为止关于叶酸衍生的PET放射性结合物的设计、放射合成和用于靶向FR阳性肿瘤的效用的研究进展。本文主要介绍了用氟-18(t 1 / 2 = 109.8 分钟)和镓-68(t 1 / 2 = 67.7 分钟)标记的叶酸放射性结合物的结果,但也讨论了用“外来”和新 PET 放射性核素标记的叶酸,例如铜-64(t 1 / 2 = 12.7 小时)、铽-152(t 1 / 2 = 17.5 小时)、钪-44(t 1 / 2 = 3.97 小时)、钴-55(t 1 / 2 = 17.5 小时)和锆-89(t 1 / 2 = 78.4 小时)。对于肿瘤成像,迄今为止报道的 PET 放射性标记叶酸中,除了 [ 18 F]AzaFol 之外,没有一种完成了从实验室到临床的旅程,该药物在一项多中心首次人体试验中成功用于转移性卵巢癌和肺癌患者。然而,在不久的将来,我们预计会有更多基于叶酸的 PET 放射性药物的临床试验,因为临床对成像和 FR 相关恶性肿瘤的治疗越来越感兴趣。
摘要 人类与致命疾病的斗争自古以来就一直在持续。科学技术在对抗这些疾病方面的贡献不容忽视,这完全归功于新方法和产品的发明,它们的尺寸范围从微米扩展到纳米。最近,纳米技术因其诊断和治疗不同癌症的能力而受到越来越多的关注。不同的纳米粒子已被用于规避与保守的抗癌输送系统相关的问题,包括其非特异性、副作用和突发释放。这些纳米载体包括固体脂质纳米粒子 (SLN)、脂质体、纳米脂质载体 (NLC)、纳米胶束、纳米复合材料、聚合物和磁性纳米载体,它们带来了抗肿瘤药物输送的革命。纳米载体提高了抗癌药物的治疗效果,在特定部位更好地积累并持续释放,提高了生物利用度,并绕过正常细胞导致癌细胞凋亡。在这篇综述中,简要讨论了癌症靶向技术和纳米粒子的表面改性,以及可能面临的挑战和机遇。可以得出结论,了解纳米医学在肿瘤治疗中的作用具有重要意义,因此,该领域的现代进展对于肿瘤患者的繁荣今天和富裕未来至关重要。
药物开发需要时间,而且通常无法满足当今医疗保健的需求。这主要是因为将新药推向市场需要很长时间、从头药物开发的成本惊人以及开发过程中的高流失率 ( 1 )。目前对药物开发的估计表明,将新化学实体 (NCE) 开发成实际药物需要超过 12 年的时间和超过 1 亿美元 ( 2 )。即使投入了如此多的资源,也只有不到 2% 的 NCE 能够开发成药物(98% 的流失)。药物开发失败的主要原因是缺乏安全性和有效性 ( 3 )。在进行临床前研究以确定可行性之后,NCE 必须通过严格的 I 期和 II 期试验,才能在临床环境中建立良好的毒理学和药理学特征。少数通过 I 期和 II 期临床试验审查的候选药物将进入 III 期试验,以验证其在大量处于特定疾病不同阶段和合并症的患者中的临床疗效。减轻围绕新药发现和开发的不确定性,并简化临床试验流程是肿瘤学的必需品,因为癌症仍然是全球主要的公共卫生问题。一种可能的解决方案是
由刺激基因编码的干扰素基因的刺激剂是一种378个氨基酸蛋白,其中包含三个功能结构域,即四个N末端跨膜螺旋,一个中央球状结构域,一个中央球状结构域和C-末端域和一个C-末端域(1,2)。sting,也称为TMEM173,MITA和MPYS,是I型IFN刺激剂,充当内质网适配器蛋白,在先天免疫信号传导中起重要作用(3,4)。先天免疫系统是宿主防御的第一线,可以感知并响应来自外部病原体或内部肿瘤的多种危险信号,从而导致炎症细胞因子的分泌以及近端抗原抗原抗原呈递细胞的成熟和激活(5,6)。环状GMP-AMP合酶(CGAS)是一种直接的细胞质DNA传感器,可以生成第二个信使环鸟嘌呤单磷酸 - 单磷酸盐单磷酸盐(CGAMP)(CGAMP),并招募sting以启动一系列下游反应(7-9)。激活的刺激随后募集并激活储罐结合激酶I(TBK1),然后磷酸化转录因子干扰素调节因子3或核因子kappa b,从而导致其核转移以促进I型IFN基因的转录(9-11)。I型IFN的产生进一步增强了抗肿瘤免疫反应(12)。 刺激对于抗癌免疫至关重要,抗癌免疫涉及免疫细胞(例如树突状细胞,正常千型型(NK)细胞和CD8+T细胞)的激活(13-15)。 此外,肿瘤内刺激激活触发了髓样衍生的抑制细胞(MDSC)和免疫抑制的募集(16)。I型IFN的产生进一步增强了抗肿瘤免疫反应(12)。刺激对于抗癌免疫至关重要,抗癌免疫涉及免疫细胞(例如树突状细胞,正常千型型(NK)细胞和CD8+T细胞)的激活(13-15)。此外,肿瘤内刺激激活触发了髓样衍生的抑制细胞(MDSC)和免疫抑制的募集(16)。癌细胞在肿瘤发育和进展过程中抑制CGA/STING途径,从而导致肿瘤免疫逃避(10)。CGA/STING途径是异质性的,具有肿瘤抑制或促肿瘤的活性,这为抗肿瘤治疗的发展提供了巨大的潜力(17,18)。在T-细胞衍生的肿瘤细胞中发现了与STING相关途径的凋亡功能障碍,而小鼠原发性T细胞白血病对刺痛激动剂的反应过度,这表明刺激者具有强大的治疗潜力(19)。泛癌研究表明,刺激在癌组织中高度表达。此外,刺激表达与某些肿瘤类型的临床结局密切相关,表明该蛋白在肿瘤中起重要作用
免疫检查点抑制剂(ICI)成为近年来令人瞩目的突破之一,它的出现为肿瘤治疗带来了新的曙光。其主要通过阻断一类被称为免疫检查点的蛋白质来恢复免疫系统杀死肿瘤细胞的能力(1)。针对程序性死亡受体-1(PD-1)、程序性死亡受体配体-1(PD-L1)和细胞毒性T淋巴细胞相关抗原-4(CTLA-4)的抑制剂已成功获批用于临床治疗恶性淋巴瘤、非小细胞肺癌等多种恶性肿瘤(2-4)。然而,随着ICI的广泛使用,大量患者出现不同程度的免疫相关不良事件(irAE),甚至部分患者因严重的不良反应而中断治疗。因此,亟需开发疗效更好、安全性更高的免疫检查点抑制剂,为恶性肿瘤患者打破治疗困境。阿德瑞利单抗是一种 PD-L1 单克隆抗体,使用免疫球蛋白 (lg) G4 亚型免疫球蛋白,具有优异的抗肿瘤活性和安全性 ( 5 )。2023 年 2 月,该药物在中国获批用于
免疫细胞与恶性细胞之间的相互作用是根除乳腺癌的重要篇章。这种广泛分布且种类繁多的癌症对全世界的女性构成了重大威胁。乳腺癌的发病率与多种风险因素有关,特别是遗传易感性和家族史。尽管从手术和化疗到放疗和靶向治疗,治疗方式取得了进展,但持续的高复发率、转移率和治疗耐药性凸显了对新治疗方法的迫切需求。免疫疗法在乳腺癌治疗中取得了长足的进步,因为它利用了肿瘤微环境中复杂的相互作用。免疫细胞和肿瘤细胞之间的这种动态相互作用已成为免疫学研究的重点。本研究探讨了各种癌症标志物(如新抗原和免疫调节基因)在乳腺肿瘤诊断和治疗中的作用。此外,它还探索了免疫检查点抑制剂作为治疗有效药物的未来潜力,以及阻碍其疗效的挑战,特别是肿瘤诱导的免疫抑制和实现肿瘤特异性的困难。
由于带注释的样本稀缺,病理性脑损伤在图像数据中的复杂表现对监督检测方法提出了挑战。为了克服这个困难,我们将重点转移到无监督异常检测。在这项工作中,我们专门使用健康数据训练所提出的模型,以识别测试期间未见的异常。这项研究需要调查基于三元组的变分自动编码器,以同时学习健康脑数据的分布和去噪能力。重要的是,我们纠正了先前基于投影的方法中固有的一个误解,该误解依赖于这样的假设:图像内的健康区域在重建输出中将保持不变。这无意中暗示了病变图像和无病变图像在潜在空间表示上存在相当大的相似性。然而,这种假设可能并不成立,特别是由于病变区域强度对投影过程的潜在重大影响,特别是对于具有单一信息瓶颈的自动编码器。为了克服这个限制,我们将度量学习与潜在采样分离。这种方法确保病变和无病变输入图像都投影到相同的分布中,特别是无病变投影。此外,我们引入了一个语义引导的门控交叉跳过模块来增强空间细节检索,同时抑制异常,利用解码器更深层中存在的健壮健康大脑表示语义。我们还发现,将结构相似性指数测量作为额外的训练目标可以增强所提模型的异常检测能力。
肿瘤通常在慢性炎症中出现,因此在免疫学上高度活跃的壁ni。虽然免疫细胞能够识别和去除转化的细胞,但肿瘤最终通过塑造其即时的微环境来逃避对免疫系统的控制。在这种情况下,巨噬细胞在采用肿瘤相关的表型之前最初发挥抗肿瘤功能,而巨噬细胞抑制抗肿瘤的免疫反应,甚至可以维持一种闷热的炎症,增长了肿瘤的肿瘤微观环境(TME)。I型干扰素(IFNS)是炎症反应的良好调节剂。虽然已显示它们直接抑制肿瘤的生长,但积累的证据表明它们在改变TME内的免疫细胞功能方面也起着重要作用。在本综述中,我们关注I型IFN对单核细胞和巨噬细胞驱动的抗肿瘤反应的影响。特别是,我们将概述肿瘤内部因素,这些因素会影响IFN刺激的基因(ISG)表达,例如核酸,代谢产物或缺氧的存在。我们将进一步总结当前对IFN对巨噬细胞表型改变的后果的理解,即分化,极化和功能。对于后者,我们将专注于巨噬细胞介导的肿瘤细胞杀伤和吞噬作用,以及巨噬细胞如何通过分泌细胞因子并直接与免疫细胞相互作用来影响其环境。最后,我们将讨论巨噬细胞中I型IFN反应如何影响,应考虑当前和将来的肿瘤疗法。
感谢您对临床肿瘤学家职位感兴趣,该职位的专科兴趣为上、下消化道肿瘤学。成功应聘者将加入一个成熟的临床和医学肿瘤学家团队,该团队已为什罗普郡、特尔福德、雷金和波伊斯的胃肠道患者提供护理。该职位还将与新任命的上消化道团队的医学肿瘤学家密切合作。该职位持有者将加强胃肠道团队并支持服务的增长和发展。该团队由 4 名临床护理专家提供支持,其中一名是新任命的护士顾问,将在上消化道工作方面拥有越来越多的自主权。肿瘤科服务是临床试验的广泛采用者,在胃肠道组合中进行了 4 次试验。这种强烈的研究和创新精神将使该职位持有者能够在新试验出现时进行合作。什鲁斯伯里和特尔福德医院 NHS 信托 (SaTH) 覆盖范围广泛,包括什罗普郡、特尔福德、雷金和波伊斯的郊区和农村社区。SaTH 覆盖的患者总数超过 575,000 人,并且随着当地移民人数的增加而不断增长,主要发生在什罗普郡和特尔福德和雷金。为此,该信托已获得 3.12 亿英镑用于医院改造,将在皇家什鲁斯伯里医院内设立一个新的 32 床位的血液科和肿瘤科病房。工程已经开始,并将于 2027 年左右交付。整个信托项目将释放房地产,从而允许在特尔福德的 Princess Royal 医院内设立一个由慈善机构资助的肿瘤科和血液科日间病房,大约在 2028 年之后。这些投资机会将成为未来服务增长的垫脚石,并进一步扩大我们多元化、多学科的员工队伍。我们期待着欢迎您加入我们的团队。
恶性肺癌发病率高,5年生存率极差。人类细胞内约80%-90%的蛋白质降解是通过泛素化酶途径进行的,特异性极高的泛素连接酶(E3)在靶蛋白的泛素化过程中起着至关重要的作用,泛素化通常发生在底物蛋白的赖氨酸残基上。不同的泛素化形式对靶蛋白的影响不同,多个短链泛素化残基修饰底物蛋白,是蛋白质降解的有利信号。细胞内蛋白质泛素化与去泛素化之间适应生理需要的动态平衡,有利于生物体的健康。蛋白质泛素化对许多生物学途径都有影响,这些途径的失衡导致包括肺癌在内的疾病。抑癌蛋白因子的泛素化或肿瘤致癌蛋白因子的去泛素化往往导致肺癌的进展。泛素蛋白酶体系统(UPS)是肺癌新型抗癌药物研发的宝库,尤其是针对蛋白酶体和E3s,精准靶向的致癌蛋白泛素化降解可能为肺癌药物研发提供光明的前景;特别是蛋白水解靶向嵌合(PROTAC)诱导的蛋白质降解技术将为肺癌新型药物的研发提供新的策略。
