迅速变化的安全环境使许多非军事措施提出了兴趣。这些措施通过给敌对行为的性质改变了敌对行动的性质。关于南高加索地区,特定国家追求的政治课程之间的鸿沟使整个地区更容易受到政治,经济,军事和文化本质的各种外部威胁的影响。本文着重于南高加索地区混合战的经济组成部分。从安全的角度考虑这些问题,而不是从经济角度考虑。本文中强调了该地区特定国家对经济胁迫的脆弱性,并提出了改善它们的建议。作者强调了南高加索地区的区域统一,这是消除或至少减轻经济依赖并治愈持续了数十年的“区域裂缝”的先决条件。
使用经济手段实现政治目标至少自古希腊时代就开始使用。从历史上看,这种针对外国的经济压力主要用于公开军事冲突时期。两次世界大战之后,全球共识——反映在《联合国宪章》中——是限制各国可以合法使用军事胁迫的情况。这导致更广泛地部署“较软”形式的胁迫,例如经济制裁、出口管制、抵制和贸易禁运。自 21 世纪初以来,这种现象在联合国、多边和单边层面尤为突出。1 因此,最近的分析发现,公开的军事对抗已被经济胁迫所取代,经济胁迫构成了国家之间新的权力行使。事实上,2010-2020 年代实施的贸易制裁平均数量是自 1950 年代以来最高的,比上一个十年(2000 年代)增加了 80%。
叶绿素荧光发射是由吸收的光能引起的,这些光能不会以热量的形式消散,也不会用于植物的光合作用反应。光合作用分为两个不同的部分,即光反应和二氧化碳 (CO 2 ) 固定。在光反应中,光能被用来生成氧化蛋白质复合物,该复合物能够在光系统 II (PSII) 中从水中提取电子,同时重新激发提取的电子以还原光系统 I (PSI) 中的 NADP +。这些“光收集”反应导致 ATP 和还原力(还原铁氧还蛋白和 NADPH)的形成,随后通过卡尔文 - 本森 - 巴沙姆循环进行 CO 2 固定。叶绿素 a 荧光分析可以确定直接用于光化学的吸收光能量,并估计生物或非生物胁迫下的光合作用效率 ( Moustakas 等人,2021 年;Moustakas,2022 年)。叶绿素 a 荧光信号可以根据光合作用活性进行解释,以获得有关光合作用机构状态的信息,尤其是光系统 II (PSII) 的状态信息 ( Murchie 和 Lawson,2013 年;Moustakas 等人,2021 年)。叶绿素荧光测量已广泛用于探测光合作用机制的功能和筛选不同作物以耐受各种压力和营养需求(Guidi 和 Calatayud,2014 年;Kalaji 等人,2016 年;Sperdouli 等人,2021 年;Moustakas 等人,2022a 年)。使用脉冲幅度调制 (PAM) 方法可以主要计算引导至 PSII 进行光化学反应的吸收光能量,这些能量通过非光化学猝灭 (NPQ) 机制以热量形式耗散或通过不太明确的非辐射荧光过程耗散,分别标记为 F PSII 、F NPQ 和 F NO ,它们的总和等于 1(Kramer 等人,2004 年)。在本研究中,我们总结了本期特刊中的文章,为读者更新了该主题,并讨论了叶绿素荧光的当前应用
非生物胁迫是农业生产的主要限制因素,对农业生产构成严重威胁。传统育种在上个世纪显著提高了作物的生产力,但由于非生物胁迫的多基因特性,传统育种已达到其最大能力。或者,生物技术方法可以提供新的机会来生产能够适应快速变化的环境并在严重的环境胁迫条件下仍能获得高产的作物。在过去的几十年里,许多与胁迫相关的基因已被鉴定和操纵以产生抗胁迫植物,这可能导致世界上大多数国家的粮食产量进一步增加。本综述重点介绍了使用转基因技术和基因编辑技术提高植物非生物胁迫耐受性的最新进展,并强调了在人口不断增加但可用于粮食生产的土地和水资源不断减少以及气候变化迅速对农业不利的世界中,使用基因工程来确保粮食和纤维供应的潜力。
寒冷、干旱、盐碱等非生物胁迫和包括病虫害在内的生物胁迫是影响植物生长、限制农业生产力的主要因素。近年来,随着分子生物学的飞速发展,基因组编辑技术以其高效、可控、定向编辑的特点在植物学和农学中得到了广泛的应用。基因组编辑技术在抗病品种培育方面有着巨大的应用潜力,这些技术在重要禾谷类作物(如玉米、水稻、小麦等)、蔬菜和果树作物的抗性育种中取得了显著成果,其中CRISPR/Cas(成簇的规律间隔的短回文重复序列/CRISPR-associated)为全球作物产量的稳定提供了保障。本文综述了CRISRR/Cas的发展及其在不同重要作物抗性育种中的应用,强调了CRISRR/Cas技术在育种中的优势和重要性,并指出了可能存在的问题。
本专著源于与美国陆军和作战司令部参谋人员的军事规划人员的对话,讨论希望更好地了解战争门槛以下的竞争如何进行以及军队如何发挥更有效的作用。问题的一部分似乎是军事从业者往往没有充分区分击败敌人和胁迫敌人。前者涉及消除敌人的选择,而后者涉及旨在说服敌人选择合作的讨价还价。讨价还价意味着一方必须将主导地位和主动权让给对方,并进行不体面的操纵以重新获得主导地位和主动权。也许更重要的是,讨价还价违背了军事行动的逻辑和语法。当军队摧毁(或至少中和)敌军的速度比后者摧毁或中和前者的速度更快时,军队就获胜了。当目标不是摧毁敌方军事力量时,军事力量可能仍然有用,但使用它们的逻辑和语法就不那么明确了。本专著旨在阐明胁迫如何发挥作用,以便军事从业者能够更好地调整要求、威慑措施和对合作伙伴的支持,以确保美国的重大利益。
植物会随着季节变化而持续地暴露在各种环境和生物多样性压力之下,这些压力会抑制和影响植物从幼苗到收获阶段的生命过程。光照强度、温度、矿物质和水分供应等方面都存在一些异常。这些变化不断挑战植物的生长和繁殖,并产生多种环境信号。为了接收这些信号,植物本身会形成一个信号网络,其中包含多种受体,如植物激素、G 蛋白偶联受体、激酶和激素受体。信号转导会在植物中产生细胞反应,从而启动生理和发育反应。本文对植物在暴露于几种非生物胁迫时信号转导的几种机制和感知进行了深入细致的分析,并介绍了植物信号传导的一般途径。植物非生物胁迫通常在造成盐度、高温、低温、干旱等损失方面起着关键作用。为了通过主要依赖于遗传变异的常规育种来理解和克服这些问题,正在对拟南芥、水稻和短柄草等模型植物进行多项研究;在小麦中,这些基因组来源的可获得性正处于加工阶段。另一方面,基因组编辑的进步为科学家将所需特性融入特定植物物种打开了大门。第二代基因组编辑技术(如 CRISPR/cas9)的新兴发展为植物生物学家铺平了道路,使他们能够更高效、更快速地开发特性,这与传统育种方法不同。本综述概述了非生物胁迫期间信号传导的重要性以及转基因技术通过摄取植物中所需的特性来克服植物的非生物胁迫。
摘要:鹰嘴豆是世界上最重要的豆类作物之一,是极好的蛋白质来源。它在雨养条件下生长,平均产量为 1 吨/公顷,远低于最佳条件下 6 吨/公顷的潜力。高温、低温、干旱和盐度的综合影响会影响物种的生产力。在这方面,回顾了几种赋予对非生物胁迫耐受性的生理、生化和分子机制。近 100,000 个鹰嘴豆种质的大量收集是育种计划的基础,通过常规育种,如种质引进、基因/等位基因渗入和诱变,已经取得了重要进展。同时,分子生物学和高通量测序的进展使得能够开发出针对鹰嘴豆属的特定分子标记,从而促进产量成分和非生物耐受性的标记辅助选择。此外,转录组学、蛋白质组学和代谢组学已使我们能够识别与鹰嘴豆对非生物胁迫的耐受性相关的特定基因、蛋白质和代谢物。此外,在转基因植物和使用基因编辑获得耐旱鹰嘴豆的研究中也取得了一些有希望的结果。最后,我们提出了一些未来的研究方向,这些研究方向可能有助于在气候变化的情况下获得对非生物胁迫具有耐受性的鹰嘴豆基因型。
近年来,RNA 引导的基因组编辑 (CRISPR-Cas9 技术) 的发展彻底改变了植物基因组编辑。在营养缺乏条件下,不同的转录因子和调控基因网络共同作用以维持营养稳态。提高氮 (N)、磷 (P) 和钾 (K) 的利用效率对于确保可持续产量、提高质量和抗逆性至关重要。本综述概述了适合基因组编辑的潜在目标,以了解和提高营养利用 (NtUE) 效率和营养胁迫耐受性。还描述了使用关键负调节剂和正调节剂的不同基因组编辑策略。营养信号的负调节剂是基因组编辑的潜在目标,可在资源匮乏的条件下改善营养吸收和应激信号。通过 CRISPR/dead (d) Cas9 (dCas9) 胞嘧啶和腺嘌呤碱基编辑和主要编辑进行的启动子工程是产生精确变化的成功策略。 CRISPR/dCas9 系统还具有利用转录激活因子/抑制因子以有针对性的方式过度表达目标基因的额外优势。CRISPR 激活 (CRISPRa) 和 CRISPR 干扰 (CRISPRi) 是 CRISPR 的变体,其中实现了 dCas9 依赖的转录激活或干扰。dCas9-SunTag 系统可用于设计植物中的靶向基因激活和 DNA 甲基化。通过 CRISPR-Cas 技术开发营养利用效率高的植物将加快作物营养胁迫耐受性遗传改良的速度,并提高农业的可持续性。
它是什么?反胁迫工具 (ACI) 旨在阻止和抵制第三国的胁迫行为。欧盟委员会认为,非欧盟国家试图影响欧盟和/或其成员国不采取或撤回特定政策措施的做法应被定义为经济胁迫。因此,ACI 工具旨在通过实施反补贴措施来打击这些做法。这些措施包括但不限于暂停关税减让、征收关税和限制商品进口、进入欧盟公共采购、暂停服务贸易和与贸易有关的知识产权 (IPR)。正如欧盟对俄罗斯的制裁所表明的那样,还可以采取其他非常规措施。
