全球变暖、干旱、洪水和其他极端事件等气候变化的影响对全球作物生产构成了严峻挑战。油菜对油料产业的贡献使其成为国际贸易和农业经济的重要组成部分。这种作物遭受的多种非生物胁迫越来越多,导致农业经济损失,因此,让油菜作物在同时面临多种非生物胁迫时具有生存和维持产量的能力至关重要。为了更好地了解压力感知机制,需要分析多种压力响应基因和其他调控元件(如非编码 RNA)的调控途径。然而,我们对这些途径及其在油菜中的相互作用的理解还远未完成。本综述概述了目前对压力响应基因及其在赋予油菜多种压力耐受性方面的作用的了解。通过组学数据挖掘分析网络串扰现在使得揭示植物压力感知和信号传导所需的潜在复杂性成为可能。本文还讨论了新型生物技术方法,例如无转基因基因组编辑和利用纳米粒子作为基因传递工具。这些方法有助于为开发具有更少监管限制的、能够抵御气候变化的油菜品种提供解决方案。本文还强调了合成生物学通过微调应激调节元件来设计和修改网络的潜在能力,以适应植物对应激的适应。
在世界谷物产量统计中,燕麦排在第六位,仅次于小麦、玉米、大米、大麦和高粱。在世界许多地方,燕麦不仅用作谷物,还用作饲料和草料,用作铺垫物、干草、半干草、青贮饲料和谷壳。燕麦作物的主要用途仍然是用作牲畜谷物饲料,平均占世界总使用量的 74% 左右。在印度,燕麦育种始于 20 世纪 80 年代,是印度西北部、中部和东部地区最重要的谷物饲料作物。作为饲料作物,燕麦具有优良的蛋白质质量、脂肪和矿物质含量。它是一种美味、多汁且营养丰富的作物。许多疾病会造成严重的直接损害,主要是饲料产量的降低。其中包括冠锈病、茎锈病和叶斑病等疾病。在超过 31 个野燕麦品种中,已从燕麦基因库中发现了多种抗冠锈病、秆锈病、白粉病、BYDY 等主要病害的抗性基因。人们正在广泛利用标记辅助选择 (MAS)、标记辅助回交 (MABC)、标记辅助基因聚合和标记辅助轮回选择 (MARS) 等多种育种策略将抗性基因渗入优良品种。随着新测序技术的进步和生物信息学的飞速发展,完整的燕麦基因组测序已不再遥不可及。燕麦基因组测序将为育种者开发大量基于序列的标记(如 SNP)铺平道路,这些标记将有助于通过利用连锁不平衡作图和基因组选择来识别抗病基因。