版权所有©2022 John Zarrilli *J.D。杜克大学法学院,2022年;学士学位普林斯顿大学,2018年。我要感谢Dunlap教授的指导和鼓励。我还想对我的注释编辑阿尔伯特·巴尔坎(Albert Barkan)和《杜克宪法杂志与公共政策杂志》的编辑表示最诚挚的感谢,以实现深思熟虑。这张笔记专门介绍了我的祖父母约翰和罗斯·马洛尼(Rose Maloney)。1。Stephen Rainey等人,《大脑记录》,《思想阅读》和《神经技术:从消费者设备到基于大脑的语音解码》的道德问题,26 S CI。&e ng'g。e Thics 2295,2295(2020)。2。SJORS L.T.J. Ligthart,强制性神经影像学,刑法和隐私:欧洲观点,6 J.L. &B Iosciences 289,291(2019)。 3。 Martha J. Farah等人,基于功能MRI的谎言检测:科学和社会挑战,15 n N ature r evs。 n eurosci。 123,123(2014)。 4。 Emily Murphy&Jesse Rissman,基于大脑的记忆检测和新的思维科学阅读科学,H andBook h Um。 m emory 1,18(迈克尔·卡哈纳(Michael Kahana)和安东尼·瓦格纳(Anthony Wagner)编辑,2020年)(即将到来的2021年)。SJORS L.T.J.Ligthart,强制性神经影像学,刑法和隐私:欧洲观点,6 J.L.&B Iosciences 289,291(2019)。3。Martha J. Farah等人,基于功能MRI的谎言检测:科学和社会挑战,15 n N ature r evs。n eurosci。123,123(2014)。4。Emily Murphy&Jesse Rissman,基于大脑的记忆检测和新的思维科学阅读科学,H andBook h Um。m emory 1,18(迈克尔·卡哈纳(Michael Kahana)和安东尼·瓦格纳(Anthony Wagner)编辑,2020年)(即将到来的2021年)。
康奈尔大学综合植物科学学院植物转化设施,纽约州伊萨卡 14853,美国。现地址:Pairwise,807 East Main Street,Suite 4-100,Durham,NC 27701,美国
建立了工作流程后,我们随后使用脉冲激光诱导冲击波法将 RNP 直接递送到完整的烟草叶片细胞中,这比原生质体或受精卵更容易制备和处理。我们引入了一个预组装的 RNP,它包含 HiFi Cas9 蛋白、crispr RNA (crRNA) 和 ATTO-550 标记的反式激活 crispr RNA (tracrRNA),靶向烟草 PDS 或 ADF 基因。荧光 tracrRNA 允许直接筛选转染细胞,因此不需要选择标记基因(图 2A')。样本大小和实验设置与上面描述的 DsRed 转染相同(图 1A、B)。根据我们的观察,ATTO-550 荧光在激光处理后 24 小时开始变得可见,在转染后 48 小时达到最大值。根据制造商的说法,RNP 复合物的活性最长为 72 小时。
在阐明植物非编码 RNA 的重要作用方面取得了显著进展。在这些 RNA 中,长链非编码 RNA (lncRNA) 引起了广泛关注,尤其是它们在植物环境胁迫反应中的作用。LncRNA 在不同水平上调控基因表达,其中一种机制是通过募集 DNA 甲基转移酶或去甲基化酶来调节靶基因转录。在这篇小型综述中,我们重点介绍了 lncRNA 的功能,包括它们在 RNA 指导的 DNA 甲基化 (RdDM) 沉默途径中的潜在作用及其在非生物胁迫条件下的潜在功能。此外,我们还介绍并讨论了作物中 lncRNA 的研究。最后,我们提出了对植物育种可能重要的未来研究的路径展望。
摘要。nthocyanin高蓄能是一种重要的农业特征,与对非生物胁迫,害虫,植物致病性真菌和细菌性疾病的抗性有关。B. Napus随着基因组编辑而产生的花色素色素化增加。MYB家族的许多转录因子都参与压力反应和花青素生物合成。基因ATMYB60,ATCPC和ATMYBL2是拟南芥中花青素生物合成的负调节剂,因此这些基因的敲除可以导致花呢素色素沉着增加。GRNA垫片合成以靶向这些基因的直系同源物,这些基因在甘蓝甘蓝中鉴定出来。通过农业浸润将遗传构建体引入植物组织。靶向myb转录因子的DNA结合结构域的GRNA的瞬态表达以及CAS9核酸酶成功促进了花青素的高蓄积。这些遗传构建体可用于基因组编辑和生产新的有色和胁迫的油料种子强奸品种。
摘要:脱落酸(ABA)参与调控抗旱性,而吡巴克汀抗性样(PYL)蛋白被称为脱落酸受体。为了阐明水稻中脱落酸受体之一的作用,通过 CRISPR / Cas9 在水稻中诱变 OsPYL9。基于位点特异性测序筛选出缺乏任何脱落酸靶标和 T-DNA 的纯合和杂合突变体植物,并用于形态生理学、分子和蛋白质组学分析。在胁迫条件下,突变株似乎积累了更高的脱落酸、抗氧化活性、叶绿素含量、叶片角质层蜡质和存活率,而丙二醛水平、气孔导度、蒸腾速率和维管束则较低。蛋白质组学分析发现总共有 324 种差异表达蛋白 (DEP),其中 184 种和 140 种分别上调和下调。OsPYL9 突变体在干旱和水分充足的田间条件下均表现出谷物产量增加。大多数与昼夜节律、干旱反应和活性氧有关的 DEP 在突变体植物中上调。京都基因和基因组百科全书 (KEGG) 分析显示 DEP 仅参与昼夜节律,基因本体论 (GO) 分析表明大多数 DEP 参与对非生物刺激的反应以及脱落酸激活的信号通路。蛋白质 GIGANTEA、Adagio 样和伪反应调节蛋白在蛋白质-蛋白质相互作用 (PPI) 网络中表现出更高的相互作用。因此,总体结果表明CRISPR / Cas9产生的OsPYL9突变体具有提高水稻抗旱性和产量的潜力。此外,全局蛋白质组分析为水稻抗旱的分子机制提供了新的潜在生物标记和理解。
摘要。白粉病(Blumeria graminis f. sp. Tritici,(Bgt))是一种世界范围内重要的小麦(Triticum aestivum)真菌叶面病害,造成严重的产量损失。因此,开发抗性基因和解剖抗性机制将有利于小麦育种。Bgt 抗性基因 PmAS846 被转移到来自 Triticum dicoccoides 的六倍体小麦品系 N9134 中,它仍然是最有效的抗性基因之一。在这里,通过 RNA 测序,我们与模拟感染植物相比,在小麦 -Bgt 相互作用中使用成对比较和加权基因共表达网络分析鉴定了三个共表达的基因模块。应激特异性模块的中心基因显著富集在剪接体、吞噬体、mRNA 监视途径、内质网中的蛋白质加工和内吞作用中。选取位于5BL染色体上的诱导模块基因构建蛋白质相互作用网络,预测其中关键的枢纽节点蛋白包括Hsp70、DEAD/DEAH盒RNA解旋酶PRH75、延长因子EF-2、细胞分裂周期5、ARF鸟嘌呤核苷酸交换因子GNOM-like、蛋白磷酸酶2C 70蛋白,并与RLP37、RPP13、RPS2类似物等多个抗病蛋白发生相互作用。基因本体富集结果表明,小麦在Bgt胁迫下可以通过mRNA转录机制激活结合功能基因。其中,GNOM-like、PP2C isoform X1和跨膜9超家族成员9被定位到距离为4.8 Mb的PmAS846基因片段上。该研究为深入理解抗病机制及克隆抗病基因PmAS846奠定了基础。
高通量基因筛选是一种强大的方法,可用于在全基因组范围内研究基因功能并识别对某些压力负责的基因。在这里,我们开发了一种 piggyBac 策略,可将汇集的 sgRNA 文库稳定地递送到细胞系中。我们使用这种策略在家蚕细胞中进行基于全基因组成簇的规律间隔短回文重复技术 (CRISPR)-Cas9 的筛选。我们首先构建了一个包含 94,000 个 sgRNA 的单向导 RNA (sgRNA) 文库,该文库靶向 16,571 个蛋白质编码基因。然后,我们使用 piggyBac 转座子在 BmE 细胞中生成敲除集合。我们确定了 1006 个在正常生长条件下对细胞生存至关重要的基因。在已确定的基因中,82.4%(829 个基因)与七种动物物种中的必需基因同源。我们还确定了 838 个基因,它们的缺失促进了细胞生长。接下来,我们分别使用温度和杆状病毒对生物或非生物胁迫进行了针对特定环境的阳性筛选,从每个筛选中确定了几个关键基因和途径。总之,我们的结果为家蚕基因组的功能注释和解释导致各种条件的关键基因提供了一个新颖而通用的平台。这项研究还展示了在非模式生物中进行全基因组 CRISPR 筛选的有效性、实用性和便利性。
摘要:近年来,全球气候变化迅速,人口不断增加,导致非生物胁迫发生率增加,农作物产量下降。环境胁迫,如温度、干旱、营养缺乏、盐度和重金属胁迫,是农业面临的主要挑战,它们导致农作物生长和产量大幅下降。非生物胁迫是一种非常复杂的现象,涉及植物细胞的各种生理和生化变化。暴露于非生物胁迫的植物表现出活性氧 (ROS) 水平的提高,这种物质具有高活性和毒性,会影响叶绿素的生物合成、光合能力以及碳水化合物、蛋白质、脂质和抗氧化酶的活性。转基因育种为实现植物遗传改良提供了一种合适的常规育种替代方案。在过去的二十年里,基因工程/转基因育种技术在操纵基因以诱导转基因植物所需特性方面取得了显著进展。转基因方法使我们能够识别参与特定植物过程的候选基因、miRNA 和转录因子 (TF),从而能够全面了解影响植物耐受性和生产力的分子和生理机制。这种现象的准确性和精确性确保了未来植物改良的巨大成功。因此,转基因育种已被证明是改善作物非生物胁迫的一种有前途的工具。本综述重点介绍了转基因育种在提高植物非生物胁迫耐受性和生产力方面的潜在和成功应用、最新进展和未来前景。
摘要:干旱、盐度和极端温度等非生物胁迫是全球农作物生产力的主要限制因素,预计气候变化将加剧这些因素。活性氧 (ROS) 的过量产生是许多非生物胁迫的常见后果。抗坏血酸,也称为维生素 C,是植物细胞中最丰富的水溶性抗氧化剂,可以直接作为 ROS 清除剂对抗氧化应激,或通过抗坏血酸-谷胱甘肽循环(植物细胞中的主要抗氧化系统)对抗氧化应激。因此,通过工程改造具有增强抗坏血酸浓度的作物有可能促进广泛的非生物胁迫耐受性。已经采用了三种不同的策略来增加植物中的抗坏血酸浓度:(i) 增加生物合成,(ii) 增强循环,或 (iii) 调节调节因子。在这里,我们回顾了植物中抗坏血酸生物合成、循环和调节的遗传途径,包括迄今为止用于增加模型和作物物种中抗坏血酸浓度的所有代谢工程策略的总结。然后,我们重点介绍利用基因组编辑工具来增加作物中抗坏血酸浓度的非转基因策略,例如编辑控制 GDP-L-半乳糖磷酸化酶基因翻译的高度保守的上游开放阅读框。