鹰嘴豆(Cicer Arietinum L.)是一种重要的食物豆类,在约1484万公顷的面积上种植,其保育率约为1508万吨(Faostat,2020年)。它主要是在干旱和半干旱的热带地区生长的,并且由于诸如干旱,盐度和热量等非生物胁迫而产生的大量产量损失。日益增长的环境发展和干旱的复杂性质是限制鹰嘴豆产量的主要因素之一,通常导致60%至70%的年收益率损失(Barmukh,Roorkiwal,Garg,Garg等,2022; Hajjarpoor等人,2018年)。遗传上遗传性种质的遗传改善和发展是减少干旱胁迫作用的最可持续方法(Varshney,Barmukh等,2021)。在这个方向上,有望通过增强的干旱胁迫适应性来提供更好的农作物品种。
盐和干旱胁迫一直是限制农业生产的重要因素,而SA是应激反应涉及的重要酚类,但是SA对稻米的双重盐和大米中的干旱胁迫的功能尚不清楚。在这项研究中,通过检测生理和生化指数以及盐和干旱耐受性基因的表达,研究了对稻米对双盐和干旱胁迫的外源SA触发的影响和机制。结果表明,SA的应用可以显着增加盐和干旱胁迫下水稻幼苗的抗氧化酶活性,从而减少米H 2 O 2和MDA的含量并维持水稻幼苗的生长。Moreover, the expression of genes involved in the response of abiotic stress, such as OsDREB2A, OsSAPK8, OsSAPK10 and OsMYB2 , were up-regulated under salt and drought treatment, and SA application could further enhance the expression of those genes like OsDREB2A and OsSAPK8 , suggesting that SA might regulate antioxidant enzyme activity via inducing the expression of salt and drought tolerance基因并增强大米的盐和干旱耐受性。结果将丰富SA功能的知识,并提供了研究大米盐和干旱性中SA机制的参考,并使用改善的盐和耐干旱的盐分繁殖新的水稻种质。
内布拉斯加大学林肯分校非生物胁迫耐受性博士后职位 内布拉斯加大学林肯分校 Walia 实验室现提供博士后职位,研究水稻和玉米的耐热和耐旱机制。该职位将利用全植物生理学、表型组学和分子方法,专注于谷物对耐热和耐旱胁迫反应的分子和遗传学表征。该项目的目标是从分子层面理解发育事件与非生物胁迫之间的相互作用。具有基因编辑、突变体分析、种子生物学、分子相互作用和/或表达分析方面的经验者优先考虑。应聘者必须拥有植物生物学、分子生物学或植物遗传学或密切相关领域的博士学位。有出版作品证据并对使用分子和功能基因组学方法有浓厚兴趣的候选人将优先考虑。薪水与经验和资历相称。感兴趣的候选人请通过电子邮件向 Harkamal Walia 博士(hwalia2@ unl.edu)申请。请在您的电子邮件中包含以下内容:(1) 简历和 (2) 3 位推荐人的联系信息。如需更多信息,请访问:https://www.unl.edu/psi/harkamal-walia ; https://agronomy.unl.edu/walia ; https://www.unl.edu/psi/ ;
摘要:半胱氨酸在植物的硫代谢网络中起关键作用,密切影响有机硫的转化率以及植物承受非生物胁迫的能力。在茶厂中,丝氨酸乙酰转移酶(SAT)基因出现是半胱氨酸代谢的关键调节剂,尽管显然缺乏全面的研究。利用隐藏的马尔可夫模型,我们确定了茶叶基因组中的七个CSSSAT基因。生物信息学分析的结果表明,这些基因的平均分子量为33.22 kd,簇分为三个不同的组。关于基因结构,CSSSAT1在十个外显子中脱颖而出,比其家庭成员高得多。在启动子区域中,与环境反应性和激素诱导相关的顺式作用元素占主导地位,分别占34.4%和53.1%。转录组数据显示,在各种应力条件下(例如PEG,NaCl,Cold,Meja)及其在茶厂中的组织特异性表达模式,CSSSAT的复杂表达动力学。值得注意的是,QRT-PCR分析表明,在盐应力下,CSSSAT1和CSSSAT3表达水平显着增加,而CSSSAT2表现出下调趋势。此外,我们克隆了CSSSAT1 -CSSSAT3基因,并构造了相应的原核表达载体。产生的重组蛋白在诱导后显着增强了大肠杆菌BL21的NaCl耐受性,这表明CSSSATS潜在的应用在增强植物抗性抗性的抗性中。这些发现丰富了我们对CSSSATS基因在压力耐受性机制中扮演的多方面角色的理解,为未来的科学努力和研究追求奠定了理论基础。
近年来,人们令人信服地证明急性脑损伤可能会导致严重的心脏并发症,例如神经源性应激心肌病(NSC),这是一种特定的Takotsubo心肌病。这些大脑心脏相互作用的病理生理是复杂的,涉及交感神经多动,下丘脑 - 垂体 - 肾上腺轴的激活以及免疫和炎症途径。在孤立的急性脑损伤患者以及中风患者中,我们对从大脑到心脏的轴的理解取得了长足的进步。另一方面,在NSC患者中,研究主要集中于由于心律不齐,区域壁运动异常或左心室性低下引起的血液动力学功能障碍,从而导致脑灌注压力受损。关于潜在的次要和延迟的大脑并发症的了解鲜为人知。本综述的目的是描述中风心脏脑轴,并突出显示同时出血或缺血性中风和NSC的患者的继发性和延迟脑损伤的主要病理生理机制,以及确定该特定患者的进一步研究领域的进一步研究领域。
摘要:杂交育种、诱变育种和传统的转基因育种需要花费大量时间来改善所需的特性/性状。CRISPR/Cas 介导的基因组编辑 (GE) 是一种改变游戏规则的工具,它可以在更短的时间内产生所需特性(例如生物和非生物抗性)的变异,提高质量和产量,并且易于应用、效率高、成本低,可以快速改良作物。植物病原体和恶劣的环境在世界范围内造成了相当大的农作物损失。GE 方法的出现为培育多种抗性作物品种打开了新的大门。本文,我们总结了 CRISPR/Cas 介导的 GE 在作物分子育种计划中抗生物和非生物胁迫的最新进展,其中包括修改和改进对真菌、病毒和细菌病原体引起的生物胁迫的基因反应。我们还深入讨论了 CRISPR/Cas 在植物非生物胁迫(除草剂、干旱、高温和寒冷)中的应用。此外,我们讨论了育种者使用转基因工具进行作物改良所面临的局限性和未来挑战,并提出了转基因农业应用未来改进的方向,为培育具有广泛抗生物和非生物胁迫能力的超级品种提供了新思路。
暴露于高浓度 NaCl 的绿豆植株的生长、产量、生理参数、叶绿素含量、离子吸收(Na + 较少和 K + 离子较多)和养分含量均有所变化,冬季作物比夏季作物表现出更高的敏感性。然而,引入 B. pseudomycoides 产生了明显的缓解效果,这反映在植物生长、产量属性、生理参数、离子吸收和养分含量的改善上。研究结果强调了绿豆冬季和夏季作物对 NaCl 胁迫的不同反应,并强调了耐盐细菌作为减少盐分引起损害的可持续解决方案的潜力。这项研究为制定能够减轻盐分胁迫对不同季节绿豆作物的不利影响的弹性农业实践提供了宝贵的见解,从而提高了易受土壤盐渍化影响地区的粮食安全。
摘要。nthocyanin高蓄能是一种重要的农业特征,与对非生物胁迫,害虫,植物致病性真菌和细菌性疾病的抗性有关。B. Napus随着基因组编辑而产生的花色素色素化增加。MYB家族的许多转录因子都参与压力反应和花青素生物合成。基因ATMYB60,ATCPC和ATMYBL2是拟南芥中花青素生物合成的负调节剂,因此这些基因的敲除可以导致花呢素色素沉着增加。GRNA垫片合成以靶向这些基因的直系同源物,这些基因在甘蓝甘蓝中鉴定出来。通过农业浸润将遗传构建体引入植物组织。靶向myb转录因子的DNA结合结构域的GRNA的瞬态表达以及CAS9核酸酶成功促进了花青素的高蓄积。这些遗传构建体可用于基因组编辑和生产新的有色和胁迫的油料种子强奸品种。
• 全球亚热带和温带地区干旱期的频率和长度正在增加。表观遗传对水分胁迫的反应可能是植物抵御这些难以预测的挑战的关键。实验性 DNA 去甲基化与应激因子的应用相结合是揭示表观遗传学对植物应激反应贡献的适当策略。• 在温室中,我们分析了用 5-氮杂胞苷对种子进行去甲基化和/或反复受水胁迫后,一年生地中海草本植物 Erodium cicutarium 成年植株叶片胞嘧啶甲基化的变化。我们使用亚硫酸盐 RADseq (BsRADseq) 和新报道的 E. cicutarium 参考基因组,以 2 9 2 因子设计表征甲基化变化,控制植物相关性。 • 从长期来看,仅用 5-氮杂胞苷处理会导致单个胞嘧啶的低甲基化和高甲基化,在 CG 环境中会出现显著的低甲基化。在对照条件下,干旱导致除 CHH 环境中所有环境中的甲基化减少。相反,经历反复水胁迫并用 5-氮杂胞苷处理的植物的基因组使 DNA 甲基化水平增加约 5%。• 种子去甲基化和反复干旱在整体和特定环境中的胞嘧啶甲基化方面产生了高度显著的相互作用。大多数甲基化变化发生在基因区域周围和转座因子内。这些与基因相关的差异甲基化区域的注释包括几个在应激反应中具有潜在作用的基因(例如 PAL、CDKC 和 ABCF),证实了表观遗传在分子水平上应对应激的贡献。