马铃薯是第三大重要粮食作物,但种植面临众多疾病和不利的非生物条件的挑战。为了对抗疾病,经常使用杀菌剂是很常见的。通过基因组编辑敲除易感基因可能是提高抗性的持久选择。DMR6 已被描述为几种作物中的易感基因,根据数据显示,基因功能中断后抗性增加。在马铃薯中,Stdmr6-1 突变体已被描述为在受控条件下对晚疫病病原菌 Phytophthora infestans 具有更高的抗性。在这里,我们展示了连续四年在 P. infestans 种群复杂的地区对 CRISPR/Cas9 突变体进行的田间评估,结果表明对晚疫病的抗性增强,而不会影响产量或块茎质量。此外,对田间试验中马铃薯块茎的研究表明,对普通疮痂病的抗性增强,突变株系在受控条件下表现出对早疫病病原菌 Alternaria solani 的抗性增强。早疫病和疮痂病是马铃薯抗性育种中难以攻克的病害,因为抗性基因非常稀少。Stdmr6-1 突变体所描述的广谱抗性可能进一步扩展到某些非生物胁迫条件。在干旱模拟或盐度的受控实验中,Stdmr6-1 突变体植物受到的影响小于背景品种。总之,这些结果表明 Stdmr6-1 突变体有望成为未来可持续马铃薯种植的有用工具,且没有任何明显的权衡。
有效微生物(EMS)和/或氮(N)的应用对植物对非生物应激条件具有刺激作用。本研究的目的是确定EMS和N的共同应用对生长,生理生物化学属性,解剖结构,营养获取,辣椒蛋白,蛋白质和渗透蛋白含量的含量,以及抗氧化辣椒(Capsicum annum annum L.)的抗氧化防御系统。在现场试验中,不应用EMS(EMS-)或应用(EMS +),三个N速率为120、150和180 kg N ha -1单位N ha -1(分别指定为N 120,N 150和N 180),以在盐水土壤中生长的热胡椒植物(9.6 ds ds m -1)。EMS和/或高N水平的应用减轻了盐引起的损害,以降低胡椒生长和产量。与用推荐剂量(EMS -×N 150)相比,与n150或n 180相比,将水果的数量,平均体重和果实的数量,平均体重和收益率增加了14.4或17.0%或17.0%或17.0%或17.0%或17.0%或17.0%或17.0%或17.0%或28.4或27.5%。与n150或n 180单独应用或结合使用EMS +时,辣椒素的积累增加了16.7或20.8%,蛋白质的蛋白质增加了12.5或16.7%,脯氨酸分别为19.0或14.3%,总计糖的总糖含量分别为3.7或7.4%,将其与处理的EMS相比,分别为3.7或7.4%。此外,抗氧化剂的非酶含量(抗坏血酸和谷胱甘肽)和酶活性(过氧化酶,超氧化物歧化酶和谷胱甘肽还原酶)
马铃薯是第三大重要粮食作物,但种植面临众多疾病和不利的非生物条件的挑战。为了对抗疾病,经常使用杀菌剂是很常见的。通过基因组编辑敲除易感基因可能是提高抗性的持久选择。DMR6 已被描述为几种作物中的易感基因,根据数据显示,基因功能中断后抗性增加。在马铃薯中,Stdmr6-1 突变体已被描述为在受控条件下对晚疫病病原菌 Phytophthora infestans 具有更高的抗性。在这里,我们展示了连续四年在 P. infestans 种群复杂的地区对 CRISPR/Cas9 突变体进行的田间评估,结果表明对晚疫病的抗性增强,而不会影响产量或块茎质量。此外,对田间试验中马铃薯块茎的研究表明,对普通疮痂病的抗性增强,突变株系在受控条件下表现出对早疫病病原菌 Alternaria solani 的抗性增强。早疫病和疮痂病是马铃薯抗性育种中难以攻克的病害,因为抗性基因非常稀少。Stdmr6-1 突变体所描述的广谱抗性可能进一步扩展到某些非生物胁迫条件。在干旱模拟或盐度的受控实验中,Stdmr6-1 突变体植物受到的影响小于背景品种。总之,这些结果表明 Stdmr6-1 突变体有望成为未来可持续马铃薯种植的有用工具,且没有任何明显的权衡。
环境变化和人口增长是农作物生产和整个粮食安全的主要问题。为了解决这个问题,研究人员一直致力于改良谷物和豆类,并在本世纪初取得了相当大的进展。然而,如果没有蔬菜和水果,谷物和豆类加在一起不足以满足人类生活的饮食和营养需求。生产优质的蔬菜和水果极具挑战性,因为它们易腐烂、保质期短,而且在收获前后会遇到非生物和生物压力。通过引入外来基因来生产转基因作物,可以生产出优质、延长保质期和抗逆性、改变开花和果实成熟的时间的转基因作物,这种方法非常成功。然而,一些生物安全问题,如转基因异交风险,限制了它们的生产、营销和消费。现代基因组编辑技术,如 CRISPR/Cas9 系统,在这种情况下提供了一个完美的解决方案,因为它可以生产无转基因的转基因植物。因此,这些基因编辑植物可以轻松满足农作物生产和消费的生物安全规范。本综述重点介绍了 CRISPR/Cas9 系统在成功产生非生物和生物胁迫抗性方面的潜力,从而提高了蔬菜和水果的质量、产量和整体生产力。
高通量基因筛选是一种强大的方法,可用于在全基因组范围内研究基因功能并识别对某些压力负责的基因。在这里,我们开发了一种 piggyBac 策略,可将汇集的 sgRNA 文库稳定地递送到细胞系中。我们使用这种策略在家蚕细胞中进行基于全基因组成簇的规律间隔短回文重复技术 (CRISPR)-Cas9 的筛选。我们首先构建了一个包含 94,000 个 sgRNA 的单向导 RNA (sgRNA) 文库,该文库靶向 16,571 个蛋白质编码基因。然后,我们使用 piggyBac 转座子在 BmE 细胞中生成敲除集合。我们确定了 1006 个在正常生长条件下对细胞生存至关重要的基因。在已确定的基因中,82.4%(829 个基因)与七种动物物种中的必需基因同源。我们还确定了 838 个基因,它们的缺失促进了细胞生长。接下来,我们分别使用温度和杆状病毒对生物或非生物胁迫进行了针对特定环境的阳性筛选,从每个筛选中确定了几个关键基因和途径。总之,我们的结果为家蚕基因组的功能注释和解释导致各种条件的关键基因提供了一个新颖而通用的平台。这项研究还展示了在非模式生物中进行全基因组 CRISPR 筛选的有效性、实用性和便利性。
类黄酮构成茶厂叶片(茶花)的主要营养素。迄今为止,尽管众所周知,干旱应力会对茶叶中类黄酮的生物合成产生负面影响,但这种现象背后的机制尚不清楚。在此,我们报告了一种蛋白质磷酸化机制,该机制对干旱条件下茶叶中类黄酮的生物合成负面调节。转录分析表明,类黄酮生物合成的基因表达下调以及CSMPK4A的上调编码叶片中丝裂原激活蛋白激酶的CSMPK4A。荧光素酶互补和酵母双杂交测定法表明,CSMPK4A与CSWD40相互作用。在体外,特异性蛋白质免疫和蛋白质质谱分析的磷酸化测定法表明CSWD40的SER-216,THR-221和SER-253是CSMPK4A的潜在磷酸化位点。此外,在干旱条件下,蛋白质免疫分析发现了茶叶中CSWD40的磷酸化水平升高。三个磷酸化位点的突变产生了去磷酸化的CSWD40 3A和磷酸化的CSWD40 3D变体,这些变体被引入拟南芥TTG1突变体中。代谢分析表明,TTG1中的花色蛋白蛋白和原蛋白素含量较低:CSWD40 3D
评估从重金属污染土壤中分离出的 26 种细菌产生 1-氨基环丙烷-1-羧酸 (ACC) 脱氨酶的能力,证实了它们在减少重金属胁迫条件下的重要作用。26 种细菌分离株中有 8 种对 ACC 脱氨酶的产生呈阳性。分离株 #11 通过产生 α-酮丁酸 (102 µM/mg 蛋白质/小时) 具有最高的酶活性。此外,具有多种有利特性的 ACC 脱氨酶产生、根部定植、非致病性细菌也是选择,包括地衣芽孢杆菌 10 (#10)、铜绿假单胞菌 18 (#18)、肠杆菌 11Uz (#11) 和阴沟肠杆菌 Uz_5 (#5)。用悬浮液 #11 处理小麦品种“Chillaki”种子,在金属胁迫条件下,种子发芽率和生长强度 (22%) 显著提高。在严重金属胁迫下生长的植物经悬浮液 #11 处理后,结果显示与对照处理相比,植物生长指标和总叶绿素含量显著改善。此外,在小麦种子中,用肠杆菌 11Uz 悬浮液处理后,脯氨酸、过氧化氢酶和 SOD 活性上升。结果支持使用 ACC 脱氨酶产生肠杆菌 11Uz (#11) 来减轻压力,因为它可以通过其抗氧化系统保护小麦植物免受重金属胁迫。关键词:本地细菌、小麦种子、金属胁迫条件、ACC 脱氨酶、肠杆菌、抗性、脯氨酸、SOD、CAT、发芽率、生长强度 主要发现:具有植物生长刺激特性的 ACC 脱氨酶合成细菌对镍和镉阳离子表现出最高的抗性。选择细菌成功研究了在镍和镉胁迫条件下生长的小麦植株的形态特征和叶绿素含量。细菌在缓解镍和镉胁迫条件方面表现突出。
植物不断受到各种环境胁迫,这些胁迫对其生长、发育和生产力产生重大影响。其中,干旱、盐度和极端温度是最有害的。了解植物抗逆性的潜在机制对于制定提高作物抗逆性和确保粮食安全的战略至关重要。本综述全面探讨了植物对干旱、盐度和极端温度的生理、生化和分子耐受机制。我们讨论了胁迫感知和信号传导、渗透调节、抗氧化防御、激素调节以及遗传和表观遗传修饰的作用。此外,我们还重点介绍了旨在提高作物抗逆性的育种和生物技术方法的最新进展。
建立了工作流程后,我们随后使用脉冲激光诱导冲击波法将 RNP 直接递送到完整的烟草叶片细胞中,这比原生质体或受精卵更容易制备和处理。我们引入了一个预组装的 RNP,它包含 HiFi Cas9 蛋白、crispr RNA (crRNA) 和 ATTO-550 标记的反式激活 crispr RNA (tracrRNA),靶向烟草 PDS 或 ADF 基因。荧光 tracrRNA 允许直接筛选转染细胞,因此不需要选择标记基因(图 2A')。样本大小和实验设置与上面描述的 DsRed 转染相同(图 1A、B)。根据我们的观察,ATTO-550 荧光在激光处理后 24 小时开始变得可见,在转染后 48 小时达到最大值。根据制造商的说法,RNP 复合物的活性最长为 72 小时。