聚合物胶束和胶囊是抗肿瘤药物载体的有希望的候选材料。生物降解性和广义的生物相容性是用于医疗应用的聚合物应始终具有的关键特征。精心设计的输送系统应确保化疗药物安全运输到目标区域,从而最大限度地减少全身暴露于这些药物,限制其毒性作用,最好是限制其对癌细胞的毒性作用。聚合物胶束通常专门用于封装不溶于水的药物。胶束结构通常是由各种两亲性嵌段共聚物在水环境中自组装而成的。更先进的方法用于形成具有液体核心和由熔融聚合物纳米或微粒制成的外壳的胶囊。这种涂层可以具有均质或异质成分。Janus 和斑块胶囊通常具有更实用和更先进的特性。虽然一些聚合物载体设计用于持续释放货物,但更复杂的方法涉及在选定的化学或物理刺激的影响下按需释放有效载荷。可用的聚合物种类繁多,并且由不同种类的单体形成共聚物的可能性非常广泛,这使得聚合物材料成为生产具有所需特性的药物输送系统的理想选择。本综述的目的是总结聚合物胶束作为细胞抑制药物载体的某些方面,并考虑到临床应用。另一个目标是展示基于刺激响应胶囊(其外壳由聚合物颗粒制成)创建替代系统的研究。
乳腺癌和卵巢癌已成为全球女性癌症死亡的主要原因[1]。同时,酪氨酸激酶细胞膜受体的一种,人表皮生长因子受体2 (HER2) 已被证明在许多乳腺癌和卵巢癌中存在扩增和过表达[2]。在过去的几十年中,针对 HER2 受体的单克隆抗体技术得到了迅速发展,相应的抗体-药物偶联物 (ADC) 已被成功探索用于 HER2 靶向癌症治疗,即利用抗体作为载体,将细胞毒药物高效、选择性地递送到肿瘤细胞内[3-6]。然而,ADC 药物仍然存在一些不可避免的缺陷,例如体积大、制备复杂、偶联位点不特异性、组织穿透性差,这些都可能在一定程度上影响治疗效果[7-9]。为了突破这些局限性,人们开发了各种较小的蛋白质片段作为替代药物载体,如单体抗体 [ 10 ]、抗运载蛋白 [ 11 ]、DARPins(设计的锚蛋白重复蛋白)[ 12 ] 和纳米体 [ 13 ]。除这些候选分子外,亲和体是一种由 58 个氨基酸组成、形成三螺旋束的小亲和蛋白(6~7 kDa),由于其对大量靶蛋白或肽具有高亲和力而受到广泛关注 [ 14 – 16 ]。与抗体相比,亲和体分子具有几个潜在优势,例如由于体积小而能够快速组织穿透、皮摩尔亲和力具有高选择性,并且易于通过微生物发酵获得 [ 17,18 ]。更重要的是,原始亲和体序列中缺乏半胱氨酸,这为我们提供了将半胱氨酸引入序列中通过硫醇化学与有效载荷进行位点特异性结合的机会[19,20]。亲和体分子尺寸小,有利于组织渗透,但同时也导致肾脏快速清除。快速的肿瘤渗透和快速的血液清除性能使亲和体分子适用于各种医学成像应用,如正电子发射断层扫描(PET)成像[21,22]、光学和磁共振成像(MRI)[23,24]和荧光引导手术[25,26],但显然不适合癌症治疗[27]。最近,一些研究者尝试将亲和体分子与细胞毒药物结合,形成亲和体介导的靶向抗癌药物。例如,Jacek Otlewski 等人通过
背景:多药耐药性(MDR)已成为癌症治疗中的主要障碍,这有助于癌细胞对化学治疗药物的敏感性降低,这主要是由于药物外排TRAPTOPLERS的过表达。基因疗法和化学疗法的结合被认为是通过逆转MDR效应来提高抗癌功效的潜在方法。材料和方法:AS1411适体官能化的胶束是通过乳液/溶剂蒸发策略来构建的,用于同时进行Dox Obicicin和miR-519c的共同交付。使用肝细胞癌细胞系HEPG2作为模型,基于体外和体内主动靶向能力和MDR的抑制探索了胶束的治疗功效和相关机制。结果:通过以AS1411适体依赖性方式专门识别核仁素,证明胶束具有有利的细胞摄取和肿瘤渗透能力。此外,由于miR-519c抑制了ABCG2介导的药物外排,因此,阿霉素的细胞内积累得到了显着改善,从而导致有效抑制肿瘤生长。结论:胶束介导的阿霉素和miR-519c的共递送提供了一种有希望的策略,可以通过主动靶向函数和MDR的恢复获得理想的抗癌功效。关键字:胶束,适体,核苷,多药耐药性,肿瘤靶向
背景:多药耐药性 (MDR) 已成为癌症治疗的主要障碍,这主要是由于药物外排转运体的过度表达导致癌细胞对化疗药物的敏感性降低。基因治疗和化疗的结合被认为是通过逆转 MDR 效应来提高抗癌效果的潜在方法。材料和方法:通过乳液/溶剂蒸发策略构建 AS1411 适体功能化的胶束,用于同时共递送阿霉素和 miR-519c。以肝癌细胞系 HepG2 为模型,基于体外和体内主动靶向能力和对 MDR 的抑制探索胶束的治疗效果和相关机制。结果:通过以 AS1411 适体依赖的方式特异性识别核仁素,证明胶束具有良好的细胞摄取和肿瘤穿透能力。此外,miR-519c 抑制 ABCG2 介导的药物外排,显著提高阿霉素在细胞内的蓄积,从而有效抑制肿瘤生长。结论:胶束介导的阿霉素和 miR-519c 共递送提供了一种有希望的策略,通过主动靶向功能和 MDR 逆转来获得理想的抗癌效果。关键词:胶束,适体,核仁素,多药耐药,肿瘤靶向
基因组编辑疗法是一种突破性的治疗方法,只需一次治疗就能提供持久的效果。 利用mRNA可以进行高度安全的基因组编辑治疗。 纳米胶束可用于安全有效地将 RNA 输送到大脑。通过将Cas9-mRNA和引导mRNA整合到同一个纳米胶束中,可以有效地进行大脑中的基因组编辑。 基因组编辑已在多种细胞类型中得到证实,包括神经元、星形胶质细胞和小胶质细胞。 这是世界上第一份确认使用基于 RNA 的 CRISPR/Cas9 传递技术在脑实质细胞中进行基因组编辑的报告。 希望在未来,这将为亨廷顿氏病(舞蹈病)、阿尔茨海默氏病等难治性脑部疾病提供新的治疗选择。
图1研究设计。使用二糖(蔗糖和松糖)作为冷冻治疗剂研究了基于冷冻干燥的基于CRIPEC CROPEC的核心链接聚合物胶束(CCPM)。使用差异扫描色色(DSC)确定了含有CPC634(即临床阶段的Docetaxel-CCPM)水溶液的玻璃过渡温度(T g),以及冷冻保护剂,以优化温度设置,并避免在冷冻过程中进行蛋糕塌陷。使用温度传感器和Pirani仪表进行冷冻干燥的试验量表架冰冻干器,并确定了最佳设置。接下来,进行了对冷冻干燥的蛋糕和重构配方的系统分析,评估了诸如水分含量,重建时间,大小,PDI,传输电子显微镜(TEM),药物保留和释放动力学等关键质量属性。这些结果证实了生成冻干的CCPM公式进行临床评估和商业应用的可行性
全身化疗对三阴性乳腺癌 (TNBC) 有效,但通常伴有严重的副作用。本文,我们报告了一种针对促黄体激素释放激素 (LHRH) 受体且对肿瘤微环境有响应的纳米颗粒系统,可选择性地将化疗药物递送至 TNBC 细胞。该递送系统(称为“LHRH-DCM”)包含聚乙二醇和树枝状胆酸作为胶束载体、可逆胶束内二硫键作为氧化还原响应交联,以及合成的高亲和力 (D-Lys)-LHRH 肽作为靶向部分。LHRH-DCM 表现出高药物负载效率、最佳粒径、良好的胶体稳定性和谷胱甘肽响应性药物释放。正如预期的那样,LHRH-DCMs 通过受体介导的内吞作用更有效地内化到人 TNBC 细胞中,当用紫杉醇 (PTX) 封装时,对这些癌细胞的细胞毒性比非靶向对应物更强。此外,近红外荧光和核磁共振成像表明,LHRH-DCMs 促进了三种不同的乳腺癌动物模型中的肿瘤分布和有效载荷的渗透,包括细胞系来源的异种移植 (CDX)、患者来源的异种移植 (PDX) 和转基因乳腺癌。最后,体内治疗研究表明,在原位 TNBC 模型中,PTX-LHRH-DCMs 的表现优于相应的非靶向 PTX-DCMs 和目前的临床制剂 (Taxol®)。这些结果为 TNBC 的精准药物输送方法提供了新的见解。
全身化疗对三阴性乳腺癌 (TNBC) 有效,但通常伴有严重的副作用。本文,我们报告了一种针对促黄体激素释放激素 (LHRH) 受体且对肿瘤微环境有响应的纳米颗粒系统,可选择性地将化疗药物递送至 TNBC 细胞。该递送系统(称为“LHRH-DCM”)包含聚乙二醇和树枝状胆酸作为胶束载体、可逆胶束内二硫键作为氧化还原响应交联,以及合成的高亲和力 (D-Lys)-LHRH 肽作为靶向部分。LHRH-DCM 表现出高药物负载效率、最佳粒径、良好的胶体稳定性和谷胱甘肽响应性药物释放。正如预期的那样,LHRH-DCMs 通过受体介导的内吞作用更有效地内化到人 TNBC 细胞中,当用紫杉醇 (PTX) 封装时,对这些癌细胞的细胞毒性比非靶向对应物更强。此外,近红外荧光和核磁共振成像表明,LHRH-DCMs 促进了三种不同的乳腺癌动物模型中的肿瘤分布和有效载荷的渗透,包括细胞系来源的异种移植 (CDX)、患者来源的异种移植 (PDX) 和转基因乳腺癌。最后,体内治疗研究表明,在原位 TNBC 模型中,PTX-LHRH-DCMs 的表现优于相应的非靶向 PTX-DCMs 和目前的临床制剂 (Taxol®)。这些结果为 TNBC 的精准药物输送方法提供了新的见解。
肝brososis是组织自我修复的补偿性反应,由各种致病因素造成的持续性肝损伤,这是各种慢性肝病发展中最常见的组织病理学变化。1肝乳不利润是一个可逆的过程,如果给予有效的治疗,将会逆转。2肝脏的主要表现是基于I型和IV胶原蛋白的细胞外基质(ECM)的不平衡产生和降解,以及the them collagen的异常沉积,这会损害肝脏的正常结构和功能。3,4实验和临床数据表明,肝星状细胞(HSC)的大规模激活和增殖是影响肝脏发展的重要因素。5,6常规HSC通常处于静态状态,细胞质富含维生素A
能够靶向并在肿瘤微环境 (TME) 中积累的聚合物纳米级材料为更安全地递送抗癌药物提供了有希望的途径。通过在大量药物释放之前到达目标,此类材料可以减少脱靶副作用并最大限度地提高 TME 中的药物浓度。然而,较差的药物负载能力和纳米材料对肿瘤的渗透效率低会限制其治疗效果。在此,我们提供了一种新方法,可实现高负载曲线,同时确保药物快速有效地渗透到肿瘤中。这是通过将光敏紫杉醇与对肿瘤相关酶有反应的单体共聚,并将所得的二嵌段共聚物组装成球形胶束来实现的。虽然光照使紫杉醇能够从聚合物骨架中解耦成光激活胶束,但 TME 中的酶消化会引发其爆发释放。通过一系列体外细胞毒性试验,我们证明这些光开关胶束比共价连接的非触发胶束具有更大的效力,并且具有与游离药物相当的治疗特性。
