当前的癌症化学疗法药物效率低下且剧毒,因此选择适当的新形式的癌症治疗已成为重要任务之一。根据国内外研究,分别说明了聚合胶束的组成,特征和主要制备方法,尤其是靶向聚合物胶束。本综述引入了用作抗癌药物载体的不同靶向聚合物胶束。通过利用肿瘤细胞的内部微环境,制备各种具有轻微副作用的新聚合物胶束,并且可以在体外和体内效应强大,可以实现有效的药物释放控制。关键字:聚合物胶束,载体,抗癌,有针对性
传统青光眼药物疗法无法针对这种病理缺陷,这些疗法通过减少房水分泌或增加非常规流出(房水流出眼球的一条单独途径)起作用。 [4] Rho 激酶抑制剂和肌动蛋白解聚剂是最近推出的两类药物,它们可以放松和软化流出组织细胞,从而降低房水流出阻力。 [4,5] 虽然这些药物可有效降低与青光眼相关的升高眼压,但它们受到普遍存在的局部副作用的阻碍,包括结膜充血、结膜下出血、角膜卷曲和其他与视力模糊相关的角膜异常,包括形状不规则的角膜内皮细胞和点状改变。 [6,7]
背景:化学治疗剂的安全有效递送对于神经胶质瘤治疗至关重要。然而,胶质瘤的化学疗法极具挑战性,因为血脑屏障(BBB)严格阻止药物到达肿瘤区域。材料和方法:合成TFR-T12肽修饰的PEG-PLA聚合物,以递送紫杉醇(PTX)进行神经胶质瘤治疗。tfr在脑毛细管内皮细胞和神经胶质瘤细胞上显着表达。因此,TFR-T12肽修饰的胶束可以越过BBB系统并靶向神经胶质瘤细胞。结果:TFR-T12-PEG-PLA/PTX聚合物胶束(TFR-T12-PMS)可以被肿瘤细胞迅速吸收,并有效地遍历BBB单层。TFR-T12-PMS可以有效地抑制体外U87MG细胞的增殖,而带有紫杉醇的TFR-T12-PMS比未经改装的PMS提出了更好的抗细胞瘤效应,并具有长时间的裸小鼠胶原瘤的中位生存期,裸鼠的中位生存期长。结论:TFR-T12-PMS可以有效地克服BBB屏障和以胶质性胶质瘤为靶向的药物的递送,从而验证其在改善多种形式的治疗结果方面的潜力。关键词:聚合物胶束,转铁蛋白受体,BBB转胞胞菌作用,胶质母细胞瘤多形,靶向递送
摘要 我们通过全原子分子动力学 (MD) 模拟研究了阳离子和不带电表面活性剂分子及其胶束在金属-水界面上的吸附行为。我们的模拟表明,未聚集的表面活性剂分子在金属表面强烈吸附,没有任何自由能垒。胶束的吸附行为则截然不同。阳离子表面活性剂的胶束在吸附时会经历一个长距离自由能垒,这是因为这些胶束周围存在反离子和水合水的环,当胶束接近表面时,这些环会受到干扰。不带电表面活性剂的胶束周围没有反离子的环,因此表现出无障碍的吸附自由能曲线。阳离子和不带电表面活性剂的胶束都会通过在金属表面解体而强烈吸附。在崩解状态下,组成胶束的分子重新排列,以实现分子轴与表面平行的平躺配置或分子轴与表面垂直的直立配置。
目的:肿瘤内药物定点递送能力差和细胞内释放不足是化疗成功的固有缺点。本研究设计了一种特殊的聚合物胶束纳米平台,通过结合双受体介导的主动靶向和对细胞内还原电位的刺激反应来有效递送紫杉醇 (PTX)。方法:通过酰胺化反应合成双靶向氧化还原敏感聚合物叶酸-透明质酸-SS-维生素 E 琥珀酸酯 (FHSV),并通过 1 H-NMR 进行表征。然后,通过透析法制备载 PTX 的 FHSV 胶束 (PTX/FHSV)。探索了胶束的理化性质。此外,还进行了体外细胞学实验和体内动物研究,以评估聚合物胶束的抗肿瘤功效。结果:PTX/FHSV胶束具有均匀的近球形形貌(148.8±1.4nm)和较高的载药量(11.28%±0.25)。在高浓度谷胱甘肽的刺激下,PTX/FHSV胶束可以快速将载药药物释放到释放介质中。体外细胞学评价表明,与紫杉醇或单受体靶向胶束相比,FHSV胶束通过双受体介导的内吞途径产生更高的细胞摄取,从而导致肿瘤细胞的细胞毒性和凋亡明显优于正常细胞,但细胞毒性较小。更重要的是,在体内抗肿瘤实验中,PTX/FHSV胶束表现出增强的肿瘤蓄积,并产生显著的肿瘤生长抑制作用,而全身毒性最小。结论:我们的结果表明,这种精心设计的 FHSV 聚合物具有作为化疗药物载体用于精准癌症治疗的良好潜力。关键词:胶束、紫杉醇、双靶向、氧化还原敏感、细胞毒性、抗肿瘤
全世界都在研究水资源中砷 (As) 的污染问题 [1, 2]。由于砷污染水会引起严重的健康问题,美国环境保护署 (EPA) 于 2001 年将最高污染物水平从 50 ppb 改为 10 ppb [3]。因此,为了解决健康问题和环境问题,从水中去除砷越来越受到关注。包括纳滤和反渗透在内的膜分离技术等几种技术被用于去除水中 90-95% 的砷,但需要高压,因此能耗较高 [4, 5]。虽然超滤 (UF) 需要的能量较少且在较低压力下运行,但如果不增大小分子量污染物的尺寸,就无法将其去除。在胶束增强超滤(MEUF)技术中,需要添加表面活性剂来形成高于临界胶束浓度(CMC)的溶解水污染物胶束,然后通过超滤去除。研究人员研究了这项技术,因为它具有更高的去除效率和更低的能耗[6-8]。
摘要:研制了一种新型混合纳米胶束,即载阿霉素 (Dox) 的 Pluronic P123/聚乙二醇 2000-二硬脂酰磷脂酰乙醇胺纳米胶束混合胶束 (P123-PEG2000-DSPE (Dox)),以研究纳米制剂对乳腺癌 (BC) 多药耐药 (MDR) 的逆转作用。本研究旨在探索纳米制剂对 BC 多药耐药性的逆转作用。制备了 P123-PEG2000-DSPE (Dox) 混合胶束,然后通过动态光散射法、药物释放曲线和抗肿瘤活性(包括动态光散射法、MTT、免疫荧光、Western blot 和 Annexin V-PI)对 BC MCR-7 细胞和 BC 耐药细胞系 MCF-7R 进行表征。 P123-PEG2000-DSPE(Dox)通过抑制MDR1和p-gp的表达、减少药物外排、增加细胞内吞作用,逆转细胞耐药性,且效果优于PEG2000DSPE(Dox)。此外,对于载药组,P123-PEG2000-DSPE(Dox)的细胞毒性优于PEG2000-DSPE(Dox)和Dox。空药物载体PEG2000-DSPE和P123-PEG2000-DSPE没有细胞毒性。这些结果表明P123-PEG2000-DSPE(Dox)胶束可以有效逆转BC细胞的耐药性,是一种很有前途的抗肿瘤药物递送系统。
摘要:生物制药是包括多肽、蛋白质、核酸和细胞产物在内的新一代药物。由于其特殊的分子特性(如分子量大、易受酶活性影响),这些产品在给药方面存在一些限制,通常只能通过肠外途径给药。为了避免这些限制,人们提出了不同的胶体载体(如脂质体、胶束、微乳剂和树枝状聚合物)来改善生物制药的递送。尽管已报道了一些局限性(如体内失败、长期稳定性差和转染效率低),但脂质体仍是一种很有前途的药物递送系统,而且只有有限数量的制剂进入了市场。胶束和微乳剂需要更多的研究来排除一些观察到的缺点并确保其在临床上的应用潜力。由于其独特的结构,树枝状聚合物在核酸递送方面表现出良好的效果,预计这些系统在未来几年将有很大的发展。这是两篇综述文章的第二部分,介绍了生物制药输送系统的最新进展。第二部分涉及脂质体、胶束、微乳剂和树枝状聚合物。
