与男性相比,抽象女性大约被诊断出患有重度抑郁症(MDD)的可能性大约是男性的两倍。虽然MDD的性别差异可能是通过循环的性腺激素驱动的,但我们假设发育激素暴露和/或遗传性别可能起作用。小鼠在成年中被赋形切除术,以隔离发育激素的作用。我们研究了发育性性腺和遗传性别对在非压力和慢性应激条件下甲壳虫/抑郁样行为的影响,并在三个与情绪相关的大脑区域进行了RNA序列。我们使用了一种集成网络方法来识别调节应力敏感性的转录模块和特定于应力的集线器基因,重点是这些模块是否与性别有所不同。在识别出Anhedonia/抑郁样行为(女性>男性)的性别差异后,我们表明发育激素暴露(性腺女性> Gonadal雄性)和遗传性别(XX> XY)都会导致性别差异。由差异表达基因表示的顶部生物学途径与免疫功能有关。我们确定哪些差异表达的基因是由发育性性腺或遗传性别驱动的。受男性和女性慢性应激影响的基因几乎没有重叠。我们还鉴定了受压力影响的高度共表达的基因模块,其中一些模块在男性和女性的相反方向上受到影响。由于所有小鼠在成年后都有同等的激素暴露,因此这些结果表明,敏感发育期间性腺激素暴露的性别差异计划成人情绪上的性别差异,并且这些性别差异与成人循环的性腺激素无关。
3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。 *相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。 缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。 在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。 我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。 我们在计算上筛选了跨越各种化学类别的12,000多种化合物。 对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。 值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。 其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。 患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。*相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。我们在计算上筛选了跨越各种化学类别的12,000多种化合物。对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。我们的工作证明了在与ML串联串联中使用表型筛选的使用可以有效地识别具有很少已知分子靶标的高度异质指示中个性化处理的治疗铅。关键字:胶质母细胞瘤,人工智能,药物发现,机器学习简介胶质母细胞瘤多形(GBM)是人类成年人中最常见和最具侵略性的原发性脑肿瘤,其特征是遗传驱动因素的实质异质性和肿瘤微环境1-3。在过去20年中,新诊断的GBM患者的护理标准包括手术,替莫唑胺(TMZ)和电离辐射(IR),延长了12个月至15个月患者的总体生存期4,5。大规模的基因组分析增强了我们对GBM分子生物学的理解,后者支持
入侵临界大脑结构,(c)一小部分胶质母细胞瘤干细胞(GSC)的肿瘤再生能力(2,3)。出现的结果支持以下概念:不仅成熟的GBM细胞可以被天然杀伤(NK)细胞有效地靶向(4-8)(4-8),而且它们的相关干细胞也可能非常容易受到NK细胞介导的免疫攻击(9,10)。这些先天免疫性淋巴细胞在预防许多类型的癌症的肿瘤起始和转移方面具有广泛的作用,并且它们比T细胞作为治疗操作的候选者具有明显的优势(11,12)。然而,迄今为止已研究的绝大多数肿瘤细胞具有强大的免疫防御能力,使它们能够逃避NK细胞介导的细胞毒性。这些包括破坏NK和肿瘤细胞之间受体相互作用的破坏以及免疫抑制细胞因子释放到微环境中,例如转化生长因子β(TGF-β)(13-15)。即使人们可以将NK细胞免受GBM肿瘤的反射策略的侵害,也无法消除足够数量的自我更新GSC来维持完整的反应。的确,关于GSC对体内NK细胞监测的敏感性知之甚少。因此,为了确定NK细胞在体内是否可以靶向GSC,我们设计了一项临床前研究,并使用了对原代GBM组织的单细胞分析,从接受手术的患者来确定NK细胞浸润活性肿瘤的部位的程度,以及效力的效力,它们消除了患者衍生的GSC。
方法:回顾性纳入了 62 名接受 FDOPA PET 和 MRI 检查的未接受治疗的胶质瘤患者。对比增强 T1 加权图像、T2 加权图像、液体衰减反转恢复图像、表观扩散系数图和相对脑血容量图以及 FDOPA PET 图像用于体素特征提取。使用无监督两级聚类方法,包括自组织映射和 K 均值算法,并将每个类标签应用于原始图像。将肿瘤区域内每个类的标签对数比应用于支持向量机以区分 IDH 突变状态。计算受试者工作特征曲线的曲线下面积 (AUC)、准确度和 F1-socore,并将其用作性能指标。
胶质母细胞瘤(GBM)代表了由于其侵略性而引起的重大治疗挑战。肿瘤治疗场(TTFields)提出了一种有前途的GBM治疗方法。TTFIELD的主要机制,一种抗魔法作用,以及许多间接作用,包括增加的细胞膜渗透性,这与其他治疗方式相结合。当前的组合通常包括化学疗法,尤其是替莫唑胺(TMZ)的化学疗法,但是,新兴的数据表明,靶向疗法,放射疗法和免疫疗法的潜在协同作用。ttfields表现出最小的副作用,主要是与皮肤相关的,对疗法的合并没有明显的障碍。通过几项注册后研究证明了TTFields在GBM治疗中的有效性,主张持续研究以优化患者的总体生存(OS)和无进展生存期(PFS),而不是仅专注于生活质量。
摘要 胶质母细胞瘤 (GB) 是脑部最常见的恶性肿瘤。这些肿瘤大多是原发性或新生性 GB,其发病迅速,初期症状包括头痛、新发癫痫发作、局灶性神经功能障碍和精神状态改变。GB 的典型放射学特征包括强对比增强、中心坏死和伴有肿块效应的水肿。本文,我们描述了两例原发性 GB 病例——两名女性,年龄分别为 60 岁和 51 岁,她们分别在首次入院后 3.5 个月和 4 个月被诊断出患有 GB。这些患者表现为右侧头痛,神经系统检查结果在正常范围内。他们的初步放射学检查未发现可疑病变,无论是在 T1 加权还是 T2 加权磁共振 (MR) 图像上。这位 60 岁的患者因持续性头痛再次入院,她的 T1 加权 MR 图像显示右颞叶有一个边界清晰的肿块病变,具有强烈的对比增强。此外,T2 加权磁共振图像显示脑沟闭合和中线结构因水肿而肿胀。这位 51 岁的患者因持续性头痛再次入院,她的磁共振图像显示 T1 加权图像上肿块病变具有不均匀的对比增强和坏死,T2 加权图像上肿块病变具有严重水肿的高信号区域。患者接受了开颅手术和大体全肿瘤切除术。值得注意的是,在这两例病例中,病变均在病理上诊断为 GB。因此,应该记住,只有持续性头痛才可能是 GB 的警示信号,在放射学上可见之前,从而强调需要在短时间内进行随访影像学研究。
胶质母细胞瘤(GBM)约占所有恶性脑肿瘤的一半,并且五年生存率少于10%。尽管该领域取得了巨大的进步,但它还是设法逃避了最有前途的治疗学:免疫疗法。主要原因是高度时空异质和免疫抑制GBM肿瘤微环境(TME)。考虑TME驱动的免疫抑制的这种复杂相互作用是开发有效疗法的关键。本综述将通过确定其对TME的贡献作为GBM免疫反应的关键介体来探讨细胞外基质(ECM)的免疫调节作用。这种关系将有助于我们阐明可以利用的治疗靶标,以开发和提供更有效的免疫疗法。
CAA风险(序数)Shade等。2024 -ROSMAP+NACC+ACT‡7,381 70.6%-0.81 [0.76,0.86] 8.00E -12 CAA风险(ordinal)Rosmap(重叠的Shade Shade et al.2024)847 46.5%50.1%0.67 [0.54,0.83] 2.57E-04 CAA风险(ORDINAL)NACC(重叠的Shade Shade Shade et al.2024)4,126 84.1%49.0%0.85 [0.78,0.92] 1.07E-04 CAA风险(ORDINAL)MCSA(独立于Shade等人2024)801 33.5%47.3%0.87 [0.73,1.05] 0.151
在斑马鱼中,Müller神经胶质在损伤,获得祖细胞特性并产生所有视网膜细胞类型时会发生增生反应(8)。大多数通过增生的müller神经胶质产生的细胞仍然是祖细胞,而少数细胞则分化为雏鸡retia中的特定神经元(9)。müller神经胶质可以在哺乳动物中被激活,但很少有人因受伤而增殖,并且不会补充损失的神经元(10)。损伤后哺乳动物中有限的müller细胞增殖可能是由于抑制性机制或有限的有丝分裂原理引起的。表征限制哺乳动物müller细胞增殖的机制可能会提供解锁哺乳动物休眠的再生潜力的线索(11)。müller神经胶质在人类视网膜损伤后可能会扩散,但没有人类视网膜神经元再生的证据。人类müller细胞(MIO系),从不同的后视网膜(12),Expressmüller和祖细胞标记中分离出来。生长因子刺激这些细胞表达有丝分裂后神经元标记(13,14)。FGF2是Müller增殖和重编程所涉及的因素之一(13,15)。没有任何损害,FGF2和胰岛素刺激Müller神经胶质,如雏鸡的神经毒性损伤所观察到的那样(15)。fgf2选择性地激活RAS/MAPK/ERK信号通路,该途径调节Müller增殖(16)。