糖尿病微血管病是糖尿病患者的典型且严重的问题,包括糖尿病性视网膜病,糖尿病性肾病,糖尿病神经病和糖尿病性心肌病。2型糖尿病和糖尿病微血管并发症患者的不对称二甲基精氨酸(ADMA)的水平显着升高,这是一种一氧化氮合酶(NOS)的内源性抑制剂。ADMA通过其对内皮细胞功能,氧化应激损伤,炎症和纤维化的影响,促进了2型糖尿病中微血管并发症的发生和进展。本文回顾了糖尿病的ADMA和微血管并发症之间的关联,并阐明了ADMA导致这些并发症的潜在机制。它为预防和治疗2型糖尿病的微血管并发症提供了一种新的想法和方法。
这种生物活性鞘脂是通过鞘氨醇磷酸化的产生的,由鞘氨酸激酶,SK1和SK2的两种同工型(Gaire and Choi,2020年)催化,然后由S1p磷酸酶和脂肪磷酸盐磷酸盐酶或子磷酸酶(S1p)closear and s1p(S1p)裂解为鞘氨酸,并将其水解回到鞘氨酸中。 2009);可以通过不同类型的膜转运蛋白(Baeyens and Schwab,2020)在细胞外导出S1P,以结合S1P 1-5并在所谓的“内外信号传导”中作用。此外,S1P还可以与细胞内靶标相互作用:核S1P降低了与转录基因调控有关的HDAC活性,并在记忆习得和恐惧灭绝记忆的髋关节功能调节中起作用(Hait等,2009)(Hait等,2014)。另外,线粒体S1P与防止素2结合,并且在调节呼吸链复合物组装和线粒体呼吸中起重要作用(Strub等,2011)。最近的研究表明,S1P与调节多种生物学事件有关,例如细胞增殖,凋亡,自噬和炎症(Cartier and HLA,2019)(Obinata和Hla,2019)(Xiao等,2023,2023)(Taha等,2006)。此外,许多最近的研究表明,S1P信号传导途径的失调参与了不同疾病的病理过程,例如癌症,糖尿病,神经退行性变性和CAR Dioseancular疾病(Takabe and Spiegel,2014,2014)(Guitton等,2014)(Guitton等,2020)(2020年)(Van Echtenten-Deckert,2023),Ala,Ala,ala amakery,Alakery,Alakery,ana amakery,AlaM。值得注意的是,S1P在缺血过程中也起着至关重要的作用(Mohamud Yusuf等,2024):的确,几项研究表明,缺血性挑战后的啮齿动物大脑中的S1P水平升高(Kimura等,2008,2008年)(Moon等,2015)(Salas-perdorcity et nirimate and in Indiending and Isporigation et and 2019),2019年(Sun。大脑损害。值得注意的,fingolimod(fty720),用于治疗复发性多发性硬化症后,在被磷酸化后,通过与五个S1P受体中的四个(S1P 1,S1P 3,S1P 4,S1P 4,S1P 5)结合起作用(Choi等人,2011)(Gr.,2011)(Gr- ^ alererererereT,2004) Brinkmann等,2010)并在脑缺血的各种啮齿动物模型中发挥神经保护作用(Czech等,2009)(Nazari等,2016)和具有脑出血的缺血性PA剂量(Fu等,2014)(Zhu等,2015)。S1P受体水平似乎在脑缺血中似乎失调:S1P受体mRNA和S1P 1,S1P 2,S1P 2,S1P 3和S1P 5的蛋白质表达在TMCAO(Salas-Perdomo等,2019)(均可用来的靶标)中,在TMCAO(Salas-Perdomo et and and Injotignt)中,在小鼠脑的不同区域中上调了小鼠脑的不同区域,治疗脑缺血(Gaire and Choi,2020年)。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年1月31日发布。 https://doi.org/10.1101/2025.01.28.635301 doi:Biorxiv Preprint
摘要。脑血管事故(CVA)是一个主要的公共卫生问题,被认为是全球死亡和残疾的主要原因之一,如果不处理,这可能会导致神经元损害。此外,凋亡过程远离缺血性焦点,例如在小脑中。由于个体中风引起的残疾,为了避免对患者健康的进一步损害,康复是必要的。因此,体育锻炼的使用可以替代此问题,涉及被动或积极的锻炼,进行性抵抗,平衡和姿势锻炼。作为体育锻炼具有系统性作用,它可以影响生物标志物的表达,例如microRNA,它们是小的非编码RNA分子,其作用于转录和后
在临床治疗和科学研究中,神经系统疾病始终代表了一个重大挑战。随着研究的进行,线粒体在神经疾病的发病机理和进展中的重要性越来越突出。线粒体不仅用作能源的来源,而且用作细胞生长和死亡的调节剂。氧化应激和线粒体都与线粒体密切相关,并且有越来越多的证据表明线粒体和氧化应激对神经系统疾病的发病机理产生了关键的调节作用。近年来,脑缺血/再灌注损伤(CI/RI),血管性痴呆(VAD)和阿尔茨海默氏病(AD)的患病率显着升高,这集体代表了一个重大的公共卫生问题。在CI/RI,VAD和AD中,已经观察到线粒体水平降低。通过线粒体水平的增加证明了相关病理的改善。CI/RI导致脑组织缺血和缺氧,这会导致氧化应激,血脑屏障(BBB)的破坏以及对脑脉管系统的损害。BBB的破坏和脑血管损伤可能在某种程度上诱导或加剧VAD。此外,由于血管损伤或功能改变引起的脑灌注不足可能会加剧淀粉样β(Aβ)的积累,从而导致或加剧AD病理学。静脉内组织纤溶酶原激活剂(TPA; Alteplase)和血管内血栓切除术是中风的有效治疗方法。但是,使用TPA和血栓切除术的机会狭窄,这导致CI/RI患者的残疾发生率明显升高。令人遗憾的是,目前还没有VAD和AD的具体药物。尽管美国食品药品监督管理局(FDA)批准了用于AD的临床一线药物,包括美金刚,盐酸多奈奈二奈二奈锡,但这些药物并未从根本上阻止AD的病理过程。在本文中,我们对神经系统疾病中的线粒体和氧化应激的机制进行了综述,近年来进行的临床试验的摘要,以及针对基于粘液和氧化应激的神经系统疾病的新策略的提议。
摘要:缺血性中风引起的神经元细胞死亡导致脑功能的永久性损害。Fas介导的外在凋亡途径和细胞色素c介导的内在凋亡途径是导致缺血性中风神经元损伤的两种主要分子机制。在本研究中,我们使用了Fas阻断肽(FBP)与带正电荷的九聚精氨酸肽(9R)偶联,与带负电荷的靶向Bax的siRNA(FBP9R/siBax)形成复合物。该复合物专门用于将siRNA递送至表达Fas的缺血性脑细胞。该复合物能够靶向抑制Fas介导的外在凋亡途径和细胞色素c介导的内在凋亡途径。具体而言,FBP靶向Fas/Fas配体信号传导,而siBax靶向参与内在途径中线粒体破坏的Bax。 FBP9R 载体系统能够将功能性 siRNA 递送至表面表达 Fas 受体的缺氧细胞 — 这一发现已通过 qPCR 和共聚焦显微镜分析得到验证。通过鼻内 (IN) 向大脑中动脉闭塞 (MCAO) 缺血大鼠模型施用 FBP9R/siCy5,脑成像显示该复合物专门定位于表达 Fas 的梗塞区域,但并未定位在大脑的非梗塞区域。单次鼻内施用 FBP9R/siBax 可有效抑制 Fas 信号传导并阻止细胞色素 c 的释放,从而显著减少神经元细胞死亡。FBP9R/siBax 的靶向递送代表了治疗脑缺血的一种有前途的替代策略。
的观点据估计,每名有缺血性中风的患者否则对静脉注射溶栓(IVT)的质量有质量,均针对直接口服抗剂(DOAC)处方。1目前,美国和欧洲的指南建议在过去48小时内摄入DOAC的患者使用IVT,除非某些实验室测试正常,而无论DOAC剂量是否正常,2 3但是在其他地区之间存在很大的异质性。4在紧急情况下确定DOAC血浆水平在大多数情况下都充满挑战和耗时。此外,DOAC等离子体水平截止值,在该机构中认为溶栓的情况很大,这在机构之间存在明显变化。因此,绝大多数急性缺血性中风患者,尽管口腔抗凝治疗口服抗凝治疗,但没有进一步的禁忌症。最近,与未服用抗凝剂的患者相比,在前7天内服用DOAC的患者中,美国中风注册中心没有增加症状性颅内出血(SICH)的风险(SICH)(未经调整的SICH风险为3.7%3.7%3.2%,调整后3.2%;调整后或0.88,95%CI 0.7至1.1 to 1.1)。5分析中存在局限性,例如不知道大多数患者的最后一次DOAC剂量的确切时机,只有一小组患者在中风之前已在48小时内确认摄入。此外,未提供针对这些患者的血浆水平测量的选择策略的信息。最近,全球
Global Cerebral Ischemia ....................................................................................................... 3 The Ischemic Cascade ............................................................................................................. 5 Dopamine and the Mesocorticolimbic Pathway ..................................................................... 8 Effects of Global Ischemia on the Hypothalamic-Pituitary-Adrenal Axis ........................... 10 Global Cerebral Ischemia and Anxiety-Like Behaviours ..................................................... 14 Inhibitory Control and Impulsivity ....................................................................................... 18
摘要:脑肿胀是缺血性中风中死亡和残疾的主要原因。药物被批准用于2型糖尿病(T2DM),并且在其他情况下可能是有益的,但在其他情况下可能是有益的。我们研究了脑缺血的鼠模型,其中具有脑动脉闭塞/再灌注(MCAO/R)。SLC5A2 /SGLT2 mRNA和蛋白质在星形胶质细胞中从头上调。MCAO/R之后,来自小鼠的大脑切片的活细胞成像表明,星形胶质细胞通过增加细胞内Na +和细胞体积和细胞体积(细胞毒性水肿)的响应响应了D-葡萄糖的适度增加,这两者都受到SGLT2抑制剂canagli-lif of of of canagli-canagli-canagli-canagli-canagli-canagli-canagli-canagli-Canagli-Canagli-Canagli-Canagli-Canagli-Canagli抑制。在三种小鼠中风模型中研究了Canagli ozin的作用:非糖尿病和T2DM小鼠具有中等缺血性损伤(MCAO/R,1/24 H)和严重缺血性损伤的非糖尿病小鼠(McAo/R,2/24 H)。canagli lozin减少了中度但不严重的缺血性损伤模型中的梗塞体积。然而,在所有测试的模型中,Canagli ozin显着降低的半球肿胀和改善的神经功能。canagli ozin减少脑肿胀的能力无论对梗塞大小的影响如何具有重要的翻译意义,尤其是在大型缺血性笔触中。
中风是一种脑血管疾病,包括中国在内的全世界发生的高死亡率和患病率很高。缺血性中风通常是由血管阻塞引起的,这是由于动脉血栓形成引起的,导致大脑中缺氧状况。这些发作激活了一系列损伤,这会导致脑细胞凋亡(Zhao等,2017)。在临床治疗中,可以使用抗血小板药物和静脉注射重组组织纤溶酶激活剂(RT-PA)来实现脑缺血的治疗。据报道,长期使用抗血小板药物会增加出血的风险,从而导致大脑出血(Diener等,2004)。RT-PA的应用受到狭窄的治疗窗口的限制和出血的高风险