摘要:该项目旨在开发一个旨在在室内环境(例如购物中心,公交车站和电影院)操作的自主垃圾机器人。机器人的主要目标是在浏览空间并避免障碍的同时检测和收集垃圾项目。利用传感器和图像处理技术的组合,机器人可以识别垃圾对象,并调整其在不误认为障碍物的情况下将其捡起的路径。通过采用具有成本效益的硬件组件和简化算法,我们旨在创建一个实用的解决方案,以解决公共空间中的垃圾污染,这证明了机器人技术在环境可持续发展方面的潜力。关键字:Raspberry Pi,垃圾检测,对象识别,避免障碍物,节点MCU,机器人,Arduino IDE
摘要关于实验方法的辩论,其作用,限制以及其可能的应用程序最近在自主机器人技术中引起了人们的关注。,如果从一方面,诸如可重复性和重复性的经典实验原理,它是发展该研究领域良好实验实践的灵感,另一方面,一些最新的分析证明了严格的实验方法尚未完全是该社区研究习惯的全部。在本文中,为了给出一部分自主机器人技术中当前的体验实践的理由,这些实践在传统的受控实验概念下无法令人满意地容纳,我们将不再进行探索实验。在这种情况下进行的探索性实验应作为在没有适当理论或理论背景的情况下进行的一种调查形式,在这种情况下,从一开始就无法完全管理对实验因素的控制。我们表明,这一概念源于(并得到)对大量论文样本中报道的实验活动的分析,这些论文已在两个最大,最重要的机器人研究会议上获得了奖励。
摘要 - 质量自治有望彻底改变广泛的工程,服务和流动性行业。超密集的自主代理之间的协调复杂的沟通需要新的人工智能(AI)在第五代(5G)和第六代(6G)移动网络中实现无线通信服务的管弦乐队。在特定的安全和任务关键任务中,合法需要透明的AI决策过程,以及一系列人类最终用户(消费者,工程师,法律)的量化质量质量质量(QOT)指标。我们概述了6G的值得信赖的自主权的概念,包括基本要素,例如可解释的AI(XAI)如何产生信任的定性和定量方式。我们还提供了与无线电资源管理和相关的关键绩效指标(KPI)集成的XAI测试协议。提出的研究方向将使研究人员能够开始测试现有的AI优化算法,并开发新的算法,认为应该从设计到测试阶段内置信任和透明度。
自主驾驶是一项复杂而具有挑战性的任务,旨在通过场景和推理来实现安全的运动计划。最近,通过增强的场景理解,几个关键问题,包括缺乏推理,低概括性能和长尾场景,但仍需要戴着几个关键问题,但仍需要进行一些关键问题。在本文中,我们提出了VLP,这是一个新颖的视力 - 语言规划框架,利用语言模式来弥合语言理解与自动驾驶之间的差距。VLP通过加强源内存基础和自动驾驶汽车的上下文理解来增强自主驾驶系统。vlp通过与先前的最佳方法相比,分别在平均L2错误和碰撞率方面,分别在平均L2错误和碰撞率方面实现了35.9%和60.5%的端到端规划表演。此外,在面对新的城市环境时,VLP在挑战性的长尾方案和强大的概括能力方面表现出改善的性能。
摘要 - 该研究旨在实施能够自主检测绵羊目标并在2D占用图上代表它们的系统,其最终目标是促进在UXV平台上自主牧羊。本文详细介绍了Blackboard System的开发,Blackboard System是一种用于自动目标检测和映射的软件解决方案。使用Python和C编程语言,Blackboard系统将单眼深度感测与自主目标检测,以产生全面的深度和目标图。这些地图是合并的,以产生从高架相机的角度捕获的操作区域的详细的2D鸟视图。黑板系统的独特功能是其模块化框架,它允许无缝更新或更换其深度传感和目标检测模块。
1。基于气候变化改编的水安全2。水资源的污染和富营养化,主要是titicaca,Uru Uru和Poopólakes。3。还原本地渔业资源的库存。4。提高公众对照顾水质和自然资源的重要性的认识。
在建筑业中的绘画是一种危险活动,为工人带来了许多建筑风险,例如从高处掉下来,笨拙的位置肌肉骨骼疾病以及暴露于有毒物质,尤其是在狭窄的空间中。大多数建筑项目都包括绘画活动和绘画活动的重复性质,导致了几个绘画机器人的提议,目前很少有商业上可用。这些机器人在目前的状态下有一定的局限性,影响了机器人的最终生产力及其在建筑工作地点的实施。本文解决的问题是缺乏对自主绘画机器人(APR)必要要素的研究,以有效,安全地执行施工绘画活动。这表明需要评估可用绘画机器人的当前局限性,以生成可以作为提高APR效率的方法进一步研究的基础的信息。因此,这项研究的目的是确定有效的APR的特性,并将其与市售APR的特性进行比较。对Scopus数据库和Google Scholar库的相关文献进行了全面研究,介绍了定义APR性能的主要参数。该研究强调了评估APR性能以及可用机器人的当前局限性的主要特性。这项研究的结果有望为对提高APR生产率提高的研究人员提供进一步的研究领域。关键词:绘画机器人,自动移动机器人,建筑自动化,建筑安全
环境,建立内部世界模型表示,做出决策并采取措施[9,50]。,尽管数十年来在学术界和工业上做出了巨大的努力,但他们的部署仍限于某些杂物或场景,并且不能在世界上无缝地应用。一个关键原因是在结构化自主驾驶系统中学习模型的概括能力有限。通常,感知模型会面临概括到不同环境的挑战,随着地理位置,传感器配置,天气条件,开放式对象等的变化。;预测和计划模型无法推广到具有罕见的sce narios和不同驾驶意图的非确定性期货[2,16,54]。是由人类学习如何感知和刺激世界的动机[27,28,49],我们主张采用驾驶视频作为通用界面,将其推广到具有动态期货的各种环境。基于此,首选驱动视频预测模型以完全捕获有关驾驶场景的世界知识(图1)。通过预测未来,视频预测因子本质上了解了自主驾驶的两个重要方面:世界如何运作以及如何在野外安全地操纵。最近,社区已开始采用视频作为代表各种机器人任务的观察行为和行动的接口[11]。对于诸如经典视频预测和机器人技术等领域,视频背景大多是静态的,机器人的运动很慢,并且视频的分解很低。相比之下,对于驾驶场景 - iOS,它与室外环境高度斗争,代理人涵盖了更大的动作,以及涵盖众多视图的感觉分辨率。这些区别导致了自主驾驶应用的重大挑战。幸运的是,在驾驶领域中开发视频预测模型[4、15、19、23、23、25、33、38、45、47]。尽管在预测质量方面取得了令人鼓舞的进展,但这些尝试并未像经典的机器人任务(例如,操作)那样实现概括能力,仅限于有限的场景,例如流量密度低[4]的高速公路[4]和小型数据集[15,23,33,33,33,45,45,47],或者在环境方面进行不同的条件,以使38个条件(33,45,47)的差异(33,45,47),以使3个条件(33,45,47)的差异(33,45,47),以使3个条件(33,45,47)的差异[3](33,45,47),以下情况下的情况[3](33,33,45,47),这是3次差异。如何揭示视频预测模型的驾驶潜力仍然很少探索。以上面的讨论为动机,我们旨在构建一个自动驾驶的视频预测模型,能够概括为新的条件和环境。为此,我们必须回答以下问题:(1)可以以可行且可扩展的方式获得哪些数据?(2)我们如何制定一个预测模型来捕获动态场景的复杂演化?(3)我们如何将(基础)模型应用于下游任务?
3。职责3.1。设计,开发和实施为自治代理系统的代码,重点是但不限于专注于行为模型,因果模型,世界模型,优先级机制,奖励机制,社交交流机制和输入输出输出界面。3.2。使用内部和外部系统和基准评估和评估自主剂系统的性能。3.3。设计,开发和实施用于评估自主代理3.4的性能的系统。设计,开发和实施API功能和体系结构功能。3.5。编写代码以支持测试,分析,验证和验证代码库,包容性自主代理系统,性能评估系统,API系统和其他系统。3.6。考虑可扩展性,算法设计,基础架构以及云提供商系统和服务的整体系统设计,编排和部署。