ufuk topcu教授德克萨斯大学在奥斯汀上举行,2025年2月28日,星期五,上午10:30麦克唐纳·道格拉斯工程礼堂(MDEA)摘要:自主系统正在作为无数应用程序的驾驶技术出现。许多学科应对使这些系统值得信赖,适应性,用户友好和经济的挑战。另一方面,现有的纪律界限延迟,甚至可能阻碍进步。我认为,设计和验证自主系统在控制,学习和正式方法的交集(除其他学科)时,出现的非惯例问题需要混合解决方案。我将在顺序决策过程中学习中的这种混合解决方案的示例。这些结果提供了有效地将基于物理,上下文或结构性的先验知识整合到数据驱动的学习算法中的新颖手段。他们通过对环境和系统以前没有经历的环境和任务的多个数量级和通用性提高了数据效率。我将在一些有希望的未来研究方向上发表评论。BIO:UFUK TOPCU是德克萨斯大学奥斯汀大学航空航天工程与工程机制的教授,他在那里拥有W.A.“ Tex” Moncrief,Jr。 计算工程和科学VI主席。 他是德克萨斯机器人技术和奥登计算工程与科学研究所的核心教师,也是自治中心主任。“ Tex” Moncrief,Jr。计算工程和科学VI主席。他是德克萨斯机器人技术和奥登计算工程与科学研究所的核心教师,也是自治中心主任。他的研究重点是自主系统设计和验证的理论和算法方面。
I.介绍土著人民和社区的自决权在《联合墨西哥国家的政治宪法》第2条(CPEUM)(CPEUM)中得到认可,国际劳工组织的第169号协议第169条,第3、4和5号,《联合国关于土著人民权利的权利》和《 XXI》的权利宣言的联合国宣言。 div>根据所示的规定,这一权利意味着人们有自由决定其政治地位和发展的自由,以及获得资源为这些决定提供资源的权利。 div>在墨西哥,这项权利是通过社区,市政当局和地区的自治权行使的,具体取决于每个土著人民的现实,条件和愿望(INPI,2019:16)2;也就是说,在每个社区,在构成市政当局的几个社区中,自治可以提高自治,市政当局本身受其规范制度或通过土著社区和市政当局的协会的约束。 div>在这种情况下,根据自己的规范决定采用除传统形式以外的组织形式的社区,需要去管辖权机构以认识其自治权或命令当局尊重它的权利。 div>同样,从未为其自主功能安排资源。 div>在这方面,考虑到这种情况,是土著人民权利的特别报告员,他访问了墨西哥(2018年)后:
本文介绍了具有不同自治水平的移动操纵器中当前研究状态的迷你审查,强调了它们相关的挑战和应用环境。在不同环境中需要移动操纵器,尤其是危险的操纵器,例如退役,搜救和救援,这是由于各种挑战和风险所面临的独特挑战和风险。在这些环境中部署的许多系统不是完全自主的,需要人类机器人的团队来确保在不确定性下安全可靠的操作。通过此分析,我们确定了有关可变自主权的文献中的差距和挑战,包括认知工作量和沟通延迟,并提出未来的方向,包括用于移动操纵者的全身自治,虚拟现实框架,大型语言模型,以减少操作员在某些挑战性和不确定方案中的复杂性和认知负载。
“ Verne大规模生产工厂的建设对我们公司来说是一项重要的一步,也是克罗地亚面向未来的汽车行业的重要贡献。这是该地区同类工厂的第一家工厂,将克罗地亚定位为现代汽车行业的关键参与者。Verne车辆的所有市场都将在克罗地亚生产,并在全球出口。我们很高兴与行业领导者VGP合作,其内部技术专长确保了从开发到物业管理的成功实施该复杂项目。重要的是要提及的是,Verne工厂的建设,其维护成本以及其他资源将全部通过私人投资提供资金,并且与欧盟资助无关。
大脑与来自身体内部环境的内脏信号密切相关,神经、血液动力学和外周生理信号之间存在众多关联。我们表明,这些大脑-身体共同波动可以通过单个时空模式捕获。在几个独立样本以及单回波和多回波 fMRI 数据采集序列中,我们发现静息状态全局 fMRI 信号、神经活动和一系列涵盖心血管、肺、外分泌和平滑肌系统的自主信号之间存在低频范围(0.01 - 0.1 Hz)的广泛共同波动。在静息状态下观察到的相同大脑-身体共同波动是由提示性深呼吸和间歇性感官刺激引起的唤醒以及睡眠期间的自发相位 EEG 事件引起的。此外,我们还发现,在实验性抑制呼气末二氧化碳 (PETCO2) 变化的情况下,整体 fMRI 信号的空间结构得以维持,这表明伴随觉醒而出现的呼吸驱动动脉 CO2 波动无法解释这些信号在大脑中的起源。这些发现证实,整体 fMRI 信号是自主神经系统控制的觉醒反应的重要组成部分。
太空探索和剥削已经进入了前所未有的增长和可及性的新时代。新颖的空间任务概念需要提高自治水平,以降低运营成本并实现雄心勃勃的目标。尤其是,具有不合作目标的小行星探索和接近性操作强烈激励自主和低延迟导航解决方案的发展。当前的深空导航在很大程度上依赖于地面系统,主要是通过Extrack和DSN网络来进行辐射跟踪和轨道测定。但是,由于信号传播延迟,这些传统方法不能为航天器提供有关其状态相对于目标的实时信息。在近距离行动中,这种限制变得至关重要,在这种操作中,国家的确定可能导致任务失败或致命的碰撞。这些挑战强调了对航天器轨道确定和控制的创新方法的迫切需求,尤其是在需要精确,及时的导航响应的情况下。在Cosmica项目的框架内(CUP D53C22003580001),本研究旨在通过使用机器学习技术等,以在自主空间导航中推进最新技术。该研究的重点是开发围绕小行星和不合作目标的邻近性操作的智能系统,在这些系统中,传统的导航方法面临重大限制。通过将人工智能与
•有关ARPA-E和此特定NOFO的问题和答案(Q&AS):http://arpa-e.energy.gov/faq。•将有关NOFO的其他问题发送至:arpa-e-co@hq.doe.gov。•将有关使用ARPA-E交易所使用的问题发送到:ExchangeHelp@hq.doe.gov。在签发NOFO时,只有通过arpa-e-co@hq.doe.gov才能与申请人进行交流。这个“安静的时期”一直有效,直到ARPA-E公开宣布项目选择为止。发送到其他电子邮件地址的电子邮件将被忽略。海藻种植提供了千兆尺度的能源生物量来源,可用于燃料,塑料,肥料,化学药品和其他目前源自陆地生物量(如土地限制玉米或常规碳氢化合物来源)等产品。美国拥有任何国家的最大海上独家经济区(EEZ)(包括扩展大陆架在内的12,338,700公里2),但在某些亚洲国家证明的规模上没有海洋生物量行业。针对挑战的技术解决方案排除了低成本,缩放的海上种植将使经济增长的时代通过通过分布式生产来供应源和弹性的多样化,从而增强美国能源和工业商品市场。当今美国水域种植的挑战可以通过与劳动力和效率低下的实践相关的高成本总结,缺乏可以出售生物质的大型可靠的市场,并且缺乏工业试验所需的大规模和可靠的耕种。利用能源合资企业海上(HAEJO)计划的自治计划将支持开发技术解决方案,以将海藻生物量种植成本降低四倍,从今天的低至千万美元降低到每千万美元的$ 120-275
本文为基于可靠的状态空间可达性分析提供了一种安全自主导航的新方法。后者改善了基于顺序航路点(NSBSWR)框架[1]的已经提出的灵活导航策略[1],同时考虑了建模和/或感知方面的明显不同的不确定性。的确,NSBSWR是一个新兴的概念,可以利用其灵活性和通用性,以避免频繁的复杂轨迹的计划/重新计划。本文的主要贡献是引入可及性分析方案,作为可靠的风险评估和管理政策,以确保连续分配的航点之间安全自主导航。为此,使用间隔分析来传播影响车辆动力学到导航系统指出的不确定性。通过求解具有不确定变量和参数的普通微分方程,通过间隔泰勒串联扩展方法揭示了所有车辆潜在的可触及状态空间。根据可达集的获得的界限,对导航安全做出了决定。一旦捕获了碰撞风险,风险管理层就会采取行动以更新控制参数,以掌握关键情况并确保适当地达到Waypint,同时避免任何风险状态。几个模拟结果证明了在不确定性下总体导航的安全性,效率和鲁棒性。
tem的自主权水平:用户cedes的控制权越多,系统产生的风险就越多。作为他人(Chan等人,2023年)以前已经指出过,迫切需要对代理机构的增加并解决增加代理的风险,我们通过基于价值的特征来做到这一点。特别是与个人的安全价值相关的风险(第5.2.10节),其中包括丧失人类生命并为隐私风险打开大门(第5.2.8节)和安全风险(第5.2.11节)。更加复杂的问题是放错位置的信任(第5.2.13节),这使雪球效应具有进一步的伤害。例如,“劫持”的安全问题,其中恶意的第三方指示代理人以实现限制性信息,可能会造成进一步的危害,因为该信息被用来妥协用户公众声誉或财务状况或攻击目标(美国AI Safetutte of Attack of Attacks of Attacks of Attack tosections)。