商标法保护标记,以使公司能够向消费者发出产品的质量。为了获得保护,商标必须能够识别和区分货物。美国法院通常会在“独特性”(称为Abercrombie Spectrum)上找到标记,该标记将标记归类为幻想,任意或暗示性,因此将标记归类为“固有的独特性”,或者是描述性或通用性的,因此并非固有的。本文探讨了是否可以使用当前的自然语言处理技术在Abercrombie频谱上找到商标。在2012年至2019年之间使用约150万个美国商标注册以及220万相关的USPTO办公室操作,该论文提出了一种机器学习模型,该模型了解商标应用程序的语义特征,并预测商标是否本质上是独特的。我们的模型总体上可以预测具有86%精度的商标行动,并且可以确定商标应用程序的子集,在该子集对其独特性的预测中高度确定。我们进一步分析商标应用程序中的哪些功能推动了模型的预测。然后,我们探索方法的实际和规范性含义。在实际层面上,我们概述了一个决策支持系统,该系统可以作为“机器人商标书记员”,协助商标专家确定商标的独特性。这样的系统还可以帮助商标专家了解商标申请的哪些功能对商标的独特性有最大的作用。在理论上,我们讨论了Abercrombie频谱的规范限制,并建议超越Abercrombie,以换取其独特性不确定的商标。我们讨论了法律中的机器学习项目,不仅如何告知我们将来可能自动化的法律制度的各个方面,而且迫使我们解决可能是看不见的规范权衡。
摘要 - 该项目具有客观地识别使用传感器“情感EEG Neuroset”的一些面部表情。此设备是一种能够通过脑电图技术(EEG)接收和解释大脑生物电活动的传感器,此外,还具有16个通道,并连续准确接受脑电波。此外,传感器具有易于使用的SDK,即使没有任何大脑信号获取经验,任何人即使没有任何经验。Emotiv®数据被转移到MATLAB®进行过滤脑电波,以通过串行通信向Arduino发送信息。因此,在Arduino板上获得了三种不同表达式的识别,即眨眼,眨眼和微笑,每个表达式在Arduino板上都有不同的LED颜色。
这些相互关联的合同链会给用户带来法律问题和业务挑战。较长的合同链可能会产生尚未解决的法律问题(例如,如果合同链中的上游协议是自主执行的,那么违反该协议会对下游协议产生什么影响?)。无论各方对这种情况的协议是什么,都必须反映在建立区块链及其操作软件的协议中。对客户业务施加的监管要求可能会产生其他法律问题。例如,医疗记录和保险环境中的区块链合同系统必须符合患者隐私保护要求;金融交易及其隐私要求也是如此。
实施高效且可持续的乘车系统需要制定良好的战略和伴随的公共政策。在基于严厉的停止场景中观察到最高的潜力。尽管这种情况在政治上可能不可行,但它显示了可以通过乘车来实现多少流量和降噪的上限。可以通过基于停止的服务设计观察到少量降低噪音,尤其是在居民区。门到门服务甚至可能会增加居民区的噪音。这项研究发表在运输研究部分,可访问开放式:https://doi.org/10.1016/j.trd.2020.102673
生物学入侵正在影响全球生物多样性,生态系统和社会经济。海洋非土著物种(MNIS)可以通过人类活动(例如海上运输和粗心丢弃水族馆物种)引入。尽管为防止引入MNI的努力做出了重大努力,但仍会出现事件,包括紫s,甲壳类动物,沿海,anthozoans,bryozoans,bryozoans,sponges,acraalgae,acroalgae,seagrasses and Mangroves(Alidoost Salimi Salimi等,2021)。一旦MNI在接收者地区建立,控制和消除它们就成为一项艰巨的任务。早期对MNIS的认识可以提高早期反应的有效性,特别是在引入阶段,这对于减少MNIS的影响至关重要。因此,必须在成功建立新栖息地并对当地生物多样性构成威胁之前,制定可靠且具有成本效益的策略来对MNI的早期发现进行早期检测。公众在海洋保护中扮演着重要角色(EARP和LICONTI,2020年),例如检测和监视Acanthaster SPP的爆发和监测。(Dumas等,2020),以及管理侵入性狮子弯曲势力(Clements等,2021)。为了监视MNIS的存在,已采取行动来帮助公众熟悉并有效地认识这些物种,例如使用手表清单和指南。然而,由于海洋物种的生物多样性,准确识别标本
Laneless和无方向运动是高速公路网络中连接和自动化车辆(CAVS)的轨迹行为的新型特征。应用此概念可以利用高速公路的最大潜在能力,尤其是在分布不均的方向需求下。尽管如此,消除了在车道和方向的分离域上的传统概念,因此可以增加混乱的驾驶行为和碰撞风险(从而损害安全性)。因此,本文的重点是在这种未来派环境中为骑士的轨迹规划,其双重目标是(i)提供和确保安全性,而(ii)提高了绩效性能。为此,我们提出了一种骑士的算法,以区分潜在的冲突车辆与自己的方向和/或反对的传播流(整个本文档中所谓的威胁)在早期(及时)阶段。之后,威胁工具被聚集为威胁群体。作为下一步,开发了一个分散的非线性模型预测控制(NLMPC)框架,以调节每个单个威胁集群中车辆的运动;从这个意义上讲,这是分别应用于每个群集中的分布式控制器。该控制方法的设计方式可以实现上述双重目标,结合了官能安全性和效率。最后,通过微观仿真研究对所提出的方法的性能进行了研究和评估。结果是有希望的,并确认了公路网络所提出的方法的效果。
残疾人经常面临独特的挑战,即获得现有的运输方式和基础设施方式。自动驾驶汽车(AVS)具有巨大的潜力,可以满足美国人未满足的流动需求。对于残疾人,AVS将提供新的出行选择和独立性,这尤其如此。但是,AVS并不整齐地适合驾驶员和乘客的传统法律结构,并且要求社区开始以不同的方式思考基础设施。《自动驾驶汽车可访问性法》将帮助残疾人更好地获得骑行骑行的行动性和独立性好处。
摘要 - Sirius和Polaris是代表康奈尔大学参加AUVSI Robosub 2024比赛的两辆自动驾驶汽车。在过去的一年中,Cuauv成员有无数小时的时间来构建我们的新2024 AUV Sirius。Sirius的上船体压力容器经过精心设计,以增加可及性并减少错误空间,并具有新的矩形轮廓。我们已经设计并集成了电池管理系统,以防止电流过度并最大程度地降低板损坏的风险。此外,我们的新基于伺服的致动系统承诺在完成任务时更可靠。这些进步的目的是建立一个可靠和精确的系统。今年的一个重要战略重点是在两辆车之间的机械和电气系统中都向后兼容。这支持我们整个系统的可靠性。
本课程的主要目的是学习参与自主机器人和/或智能代理的设计和操作的理论和实验基础。介绍性讨论涵盖了机器人感知,计划和控制的子主题。其他主要主题包括机器人零件设计,感官集成,运动运动学,仿真测试(ROS/ROS2),未建模的环境/社会因素以及现场部署方面。除了标准的地面机器人系统外,我们还将涵盖水下机器人技术和空中机器人技术的类似主题和设计选择。本课程的所有材料和家庭作业都是根据现代机器人技术广泛接受的实践开发的。本课程的预期副作用是增强您的专业知识:
