由于可能存在数据偏差和预测方差,图像去噪是一项具有挑战性的任务。现有方法通常计算成本高。在这项工作中,我们提出了一种无监督图像去噪器,称为自适应双自注意网络(IDEA-Net),以应对这些挑战。IDEA-Net 受益于生成学习的图像双自注意区域,其中强制执行去噪过程。此外,IDEA-Net 不仅对可能的数据偏差具有鲁棒性,而且还通过仅在单个噪声图像上应用具有泊松丢失操作的简化编码器-解码器来帮助减少预测方差。与其他基于单图像的学习和非学习图像去噪器相比,所提出的 IDEA-Net 在四个基准数据集上表现出色。 IDEA-Net 还展示了在低光和嘈杂场景中去除真实世界噪声的适当选择,这反过来有助于更准确地检测暗脸。源代码可在 https://github.com/zhemingzuo/IDEA-Net 获得。
摘要:本文提出了一种新型的监督学习方法——统计自适应傅里叶分解(SAFD)。SAFD 使用正交有理系统或 Takenaka-Malmquist(TM)系统为训练集建立学习模型,在此基础上可以对未知数据进行预测。该方法侧重于信号或时间序列的分类。AFD 是一种新开发的信号分析方法,它可以自适应地将不同的信号分解为不同的 TM 系统,引入了傅里叶类型但非线性和非负的时频表示。SAFD 将学习过程与 AFD 的适应性特征充分结合起来,其中少量的学习原子足以捕获信号的结构和特征以进行分类。SAFD 有三个优点。首先,在学习过程中会自动检测和提取特征。其次,所有参数都由算法自动选择。最后,将学习到的特征以数学形式表示出来,并可以根据感应瞬时频率进一步研究特征。通过心电图 (ECG) 信号分类验证了所提方法的有效性。实验表明,该方法比其他基于特征的学习方法效果更好。
近年来,基于深度学习的目标检测取得了长足的进步。然而,由于域转移问题,将现成的检测器应用于看不见的域会导致性能大幅下降。为了解决这个问题,本文提出了一种新的由粗到细的特征自适应方法用于跨域目标检测。在粗粒度阶段,与文献中使用的粗糙的图像级或实例级特征对齐不同,采用注意机制提取前景区域,并通过在公共特征空间中多层对抗学习根据其边缘分布进行对齐。在细粒度阶段,我们通过最小化来自不同域但属于同一类别的全局原型的距离来进行前景的条件分布对齐。由于这种由粗到细的特征自适应,前景区域中的领域知识可以得到有效的迁移。在各种跨域检测场景中进行了大量的实验。结果是最先进的,证明了所提出方法的广泛适用性和有效性。
摘要 - 将协作机器人集成到工业环境中的整合提高了生产率,但也强调了与操作员安全和人体工程学相关的重大挑战。本文提出了一个创新的框架,该框架集成了先进的视觉感知技术,实时人体工程学监测和行为树(BT)基于自适应的决策。与通常在孤立或静态上运行的传统方法不同,我们的方法结合了深度学习模型(Yolo11和缓慢地),先进的跟踪(无流感的卡尔曼滤波器)和动态的人体工程学评估(OWAS),提供了模块化,可扩展和适应性系统。实验结果表明,该框架在几个方面都优于先前的方法:检测姿势和动作的准确性,在管理人类机器人相互作用方面的适应性以及通过及时的机器人干预措施降低人体工程学风险的能力。尤其是,视觉感知模块比Yolov9和Yolov8具有优越性,而实时人体工程学的概念消除了静态分析的局限性。自适应角色管理是由行为树实现的,比基于规则的系统具有更大的响应能力,使该框架适合复杂的工业场景。我们的系统在掌握意图识别方面的准确性为92.5%,并成功地将人体工程学风险分类为实时响应能力(平均延迟为0.57秒),使及时的机器人指数术语 - 人类机器人合作,实时的eR-GONOMICS,实时的eR-GONOMICS,适应性的决策,视觉感知,视觉感知,是Haviour haviour tree Yolo,Yolo。
“在我们的受控实验室实验中,我们模拟了一个湍流的自由空间量子通道,以评估我们的自适应光学系统的有效性。结果令人震惊,”博士学位Lukas Scarfe说。“没有自适应光学,湍流引入了超过安全阈值的错误,使量子密钥分布变得不可能。但是,通过启用了自适应光学功能,我们成功恢复了通道,执行高维QKD并每个光子最多三个位编码,这显着提高了关键的生成率。”
HPC和量子计算已经成为当今数据驱动的经济中的驱动力,从高级模拟和AI应用程序到开创性的科学发现的所有功能。全球HPC市场预计今年将超过600亿美元,东盟国家准备做出重大贡献。展望未来,预计到2032年,该市场将达到10065.3亿美元,增长率为7.7%。这项投资的经济案例令人信服。研究一致地表明,每1美元投资于HPC基础设施,可产生令人印象深刻的44美元经济回报。在我们对该设施的1600万美元投资中,我们预计在该地区至少会产生7亿美元的经济影响,进一步增强了东盟在数字时代的竞争力。
在这项新研究中,中国的团队通过添加可以直接向大脑反馈的技术为BCI设备带来了一个全新的维度,从而使其成为双向通信设备。团队指出,使BCI设备双向设备的全部要点是提高效率并允许其在更广泛的应用程序中使用。与常规BCI设备相比,他们声称新设备可提高效率100倍,并使能源需求减少约1000倍。
对神经反馈培训研究和相关临床应用的一个重大挑战是参与者在训练过程中学习诱导特定大脑模式的困难。在这里,我们在基于fMRI的解码神经反馈(DECNEF)的背景下解决了这个问题。可以说,用于构建解码器的数据与用于神经反馈训练的数据之间的差异,例如数据分布和实验环境的差异,可能是上述参与者困难的原因。我们使用标准机器学习算法开发了一个共同适应程序。首先,我们使用以前的Decnef数据集通过模拟测试了该过程。该过程涉及一种自适应解码器算法,该算法根据其在神经反馈试验中的预测中实时更新。结果表明,在神经反馈训练期间,解码器性能有了显着改善,从而增强了学习曲线。然后,我们在Decnef培训程序中收集了实时fMRI数据,以提供概念证据证据,表明共同适应增强了参与者在训练过程中诱导目标状态的能力。因此,通过共同适应的个性化解码器可以提高Decnef培训方案的精度和可靠性,以针对特定的大脑表示,并在转化研究中产生后果。这些工具可公开提供给科学界。
抽象的现代生产系统由于客户需求的增加而面临巨大的挑战,导致了复杂的生产系统。通过管理所有操作以优化关键绩效指标的适当生产控制系统来确保竞争行业的运营效率。当前,控制系统主要基于静态和基于模型的启发式方法,需要显着的人类领域知识,因此,不符合ManufacturingCompanies.Data-DrivenReinReinForecrivecompan(RL)的动态环境,显示了CommperlistresultSinapplicationssultsinapplicationssuchassuchashassuchasboard and Commuter Games and Computer Games and Posertans Productions Productions应用程序。本文介绍了RL的设计,以通过在一个复杂的车间派遣订单派遣的现实世界示例来创建自适应生产控制系统。作为RL算法是“黑匣子”的方法,它们本质上禁止全面理解。此外,高级RL算法的经验仍然仅限于单个成功的应用程序,这限制了结果的可传递性。在本文中,我们研究了状态,行动和奖励功能RL设计的性能。分析结果时,我们确定了强大的RL设计。这使RL成为高度动态和复杂生产系统的有利控制系统,主要是在域知识受到限制时。