城市绿色基础设施(UGI)在通过自适应管理方法将生物多样性保护与可持续城市发展的可持续发展方面至关重要。本文介绍了一个综合概念框架,该框架整合了生态原理,城市规划策略和自适应管理方法,以培养有弹性和生物多样性的城市景观。UGI的本质在于它能够增强生态连通性,恢复生态系统功能并为城市环境中各种风水和动物群提供栖息地的能力。统治UGI设计的基本原则强调了其多功能性,连通性,多样性和可访问性,强调了以其迭代性和参与性为标志的适应性管理的重要性。尽管城市化带来的挑战,例如栖息地丧失,污染和气候变化,UGI干预措施为增强栖息地质量,连通性和生态系统弹性提供了有希望的途径。全球案例研究表明,UGI在生物多样性保护中的有效性,利用绿色屋顶,城市森林和社区花园等计划。UGI通过在各个领域提供多种生态系统服务,为可持续的城市发展做出了重要贡献。自适应管理对于有效的UGI规划和实施至关重要,在不断发展的环境条件下确保灵活性。但是,UGI遇到了障碍,包括资金限制,机构分裂和公平问题。应对这些挑战需要创新的培养机制,社区参与和政策创新。ugi提出了一种变革性的途径,可以促进弹性,生物多样性和可持续的城市景观,这对于城市在21世纪必须蓬勃发展。
铁是一种丰富的化学元素,自古以来就以钢和铸铁的形式用于制造工具、器皿和武器。[1,2] 钢铁目前每年的产量为 1.4 亿吨,是人类文明中最广泛利用的材料之一。[1] 如此高的产量和当前加工技术的高碳足迹,使钢铁成为现代社会减少材料对环境影响的首选材料。[3] 虽然全世界的大部分钢铁生产都用于制造致密的建筑结构元件,但人们也在探索将多孔铁块用于催化、[4] 储能、[5] 组织再生 [6] 和结构应用。[7] 对环境影响较小的轻质结构的需求日益增长,人们对此类多孔金属以及它们对旨在更有效地利用自然资源的非物质化战略的潜在贡献的兴趣日益浓厚。海绵铁是通过将矿石在熔点以下直接还原而获得的,是多孔金属最早的例子之一。[8] 由于其强度相对较低,这种多孔铁在过去被用作制造致密结构的前体。多孔金属的低强度源于众所周知的材料强度和相对密度之间的权衡。[9] 根据 Gibson-Ashby 分析模型的预测,[10] 多孔和胞状结构的强度和刚度与固相相对密度 (φ) 呈幂律关系:P∼φm,其中 P 是关注的属性,m 是缩放指数。重要的是,高度多孔的大型结构(φ<0.20)通常表现出的刚度和承载能力远低于这种简单分析模型的预期水平。 [11] 事实上,实验和计算研究表明,当材料的相对密度接近其渗透阈值时,只有一小部分固相能有效地增加多孔结构的刚度。[12,13] 这是因为在多孔网络结构整体变形过程中存在未受载荷的悬挂元素。[14]
1。一种自我监督的模型登录方法,仅取决于正面匹配对以改善面部嵌入。2。面部聚类的基于深度学习的相似性度量,该指标会自动适应给定模型的学习嵌入空间。3。不需要任何用户输入参数的全自动视频面聚类算法。4。发布电影脸聚类基准数据集,称为MoviefaceCluster,该数据集提供了电影域中存在的极端挑战的面部聚类场景。
摘要 - 将协作机器人集成到工业环境中的整合提高了生产率,但也强调了与操作员安全和人体工程学相关的重大挑战。本文提出了一个创新的框架,该框架集成了先进的视觉感知技术,实时人体工程学监测和行为树(BT)基于自适应的决策。与通常在孤立或静态上运行的传统方法不同,我们的方法结合了深度学习模型(Yolo11和缓慢地),先进的跟踪(无流感的卡尔曼滤波器)和动态的人体工程学评估(OWAS),提供了模块化,可扩展和适应性系统。实验结果表明,该框架在几个方面都优于先前的方法:检测姿势和动作的准确性,在管理人类机器人相互作用方面的适应性以及通过及时的机器人干预措施降低人体工程学风险的能力。尤其是,视觉感知模块比Yolov9和Yolov8具有优越性,而实时人体工程学的概念消除了静态分析的局限性。自适应角色管理是由行为树实现的,比基于规则的系统具有更大的响应能力,使该框架适合复杂的工业场景。我们的系统在掌握意图识别方面的准确性为92.5%,并成功地将人体工程学风险分类为实时响应能力(平均延迟为0.57秒),使及时的机器人指数术语 - 人类机器人合作,实时的eR-GONOMICS,实时的eR-GONOMICS,适应性的决策,视觉感知,视觉感知,是Haviour haviour tree Yolo,Yolo。
“在我们的受控实验室实验中,我们模拟了一个湍流的自由空间量子通道,以评估我们的自适应光学系统的有效性。结果令人震惊,”博士学位Lukas Scarfe说。“没有自适应光学,湍流引入了超过安全阈值的错误,使量子密钥分布变得不可能。但是,通过启用了自适应光学功能,我们成功恢复了通道,执行高维QKD并每个光子最多三个位编码,这显着提高了关键的生成率。”
HPC和量子计算已经成为当今数据驱动的经济中的驱动力,从高级模拟和AI应用程序到开创性的科学发现的所有功能。全球HPC市场预计今年将超过600亿美元,东盟国家准备做出重大贡献。展望未来,预计到2032年,该市场将达到10065.3亿美元,增长率为7.7%。这项投资的经济案例令人信服。研究一致地表明,每1美元投资于HPC基础设施,可产生令人印象深刻的44美元经济回报。在我们对该设施的1600万美元投资中,我们预计在该地区至少会产生7亿美元的经济影响,进一步增强了东盟在数字时代的竞争力。
在这项新研究中,中国的团队通过添加可以直接向大脑反馈的技术为BCI设备带来了一个全新的维度,从而使其成为双向通信设备。团队指出,使BCI设备双向设备的全部要点是提高效率并允许其在更广泛的应用程序中使用。与常规BCI设备相比,他们声称新设备可提高效率100倍,并使能源需求减少约1000倍。
对神经反馈培训研究和相关临床应用的一个重大挑战是参与者在训练过程中学习诱导特定大脑模式的困难。在这里,我们在基于fMRI的解码神经反馈(DECNEF)的背景下解决了这个问题。可以说,用于构建解码器的数据与用于神经反馈训练的数据之间的差异,例如数据分布和实验环境的差异,可能是上述参与者困难的原因。我们使用标准机器学习算法开发了一个共同适应程序。首先,我们使用以前的Decnef数据集通过模拟测试了该过程。该过程涉及一种自适应解码器算法,该算法根据其在神经反馈试验中的预测中实时更新。结果表明,在神经反馈训练期间,解码器性能有了显着改善,从而增强了学习曲线。然后,我们在Decnef培训程序中收集了实时fMRI数据,以提供概念证据证据,表明共同适应增强了参与者在训练过程中诱导目标状态的能力。因此,通过共同适应的个性化解码器可以提高Decnef培训方案的精度和可靠性,以针对特定的大脑表示,并在转化研究中产生后果。这些工具可公开提供给科学界。
抽象的现代生产系统由于客户需求的增加而面临巨大的挑战,导致了复杂的生产系统。通过管理所有操作以优化关键绩效指标的适当生产控制系统来确保竞争行业的运营效率。当前,控制系统主要基于静态和基于模型的启发式方法,需要显着的人类领域知识,因此,不符合ManufacturingCompanies.Data-DrivenReinReinForecrivecompan(RL)的动态环境,显示了CommperlistresultSinapplicationssultsinapplicationssuchassuchashassuchasboard and Commuter Games and Computer Games and Posertans Productions Productions应用程序。本文介绍了RL的设计,以通过在一个复杂的车间派遣订单派遣的现实世界示例来创建自适应生产控制系统。作为RL算法是“黑匣子”的方法,它们本质上禁止全面理解。此外,高级RL算法的经验仍然仅限于单个成功的应用程序,这限制了结果的可传递性。在本文中,我们研究了状态,行动和奖励功能RL设计的性能。分析结果时,我们确定了强大的RL设计。这使RL成为高度动态和复杂生产系统的有利控制系统,主要是在域知识受到限制时。