2013 年,NASA 发布《小型航天器技术最新进展》第一版报告时,全球已发射了 247 颗立方体卫星和 105 颗其他重量低于 50 公斤 (kg) 的非立方体卫星小型航天器,占多年来发射入轨质量的不到 2%。仅在 2013 年,发射的所有航天器中约有 60% 的质量低于 600 公斤,在 600 公斤以下的航天器中,83% 的质量低于 200 公斤,37% 是纳米卫星 (1)。在 2020 年发射的 1,282 颗航天器中,94% 是总质量低于 600 公斤的小型航天器,在 600 公斤以下的航天器中,28% 的质量低于 200 公斤,9% 是纳米卫星 (1)。自 2013 年以来,小型航天器的飞行历史增加了 30% 以上,并已成为商业、政府、私人和学术机构进入太空的主要来源。
Andrew J. Sinclair,主席,航空航天工程副教授 Subhash C. Sinha,联合主席,机械工程名誉校友教授 David A. Cicci,航空航天工程教授 John E. Cochran Jr.,航空航天工程名誉校友教授 George Flowers,研究生院院长
NASA STI 计划在 特别出版物。 它负责收集、组织、归档和传播 NASA 计划、项目和任务中的科学、技术或历史信息。 NASA STI 计划通常涉及与公众利益相关的主题。 技术翻译。 从而提供了世界上最大的外国航空航天科学 STI 英语翻译集合之一。 与 NASA 任务相关的科学和技术材料在 NASA 非渠道和 NASA STI 报告系列中发布,该系列包括以下报告类型: 专业服务还包括组织和发布研究结果、分发 技术出版物。专门研究报告和已完成的研究或重大研究阶段的报告,提供搜索支持,并支持数据交换或理论分析。包括重要的科学和技术汇编。有关 NASA STI 数据和信息的更多信息,请参阅以下内容:同行评审的正式专业论文,但对稿件长度和图形演示范围的限制较少。 将您的问题通过电子邮件发送至 help@sti.nasa.gov
太空产业正在蓬勃发展——从最近 Artemis 计划第一阶段的成功,到即将推出的为九次登月做准备的商业月球有效载荷服务 (CLPS) 计划。因此,必须调整用于靠近地球轨道的航天器的观测程序,以适应地球同步轨道 (GEO) 以外的太空区域 (XGEO)。然而,围绕 XGEO 存在着长期挑战,例如三体问题及其后续轨道的复杂性,以及感知比 GEO 远许多倍的物体的困难。这些挑战使得大多数传统的航天器跟踪、检测、成像和观测生成技术无法使用。
采取措施来监视和授权使用太空资产与印度领土的通信。确保保护已经实施的空间资产并采取措施,以在行政控制下引入更多的太空资产,以增强利用基于空间的通信来满足国家需求的能力。促进商业印度工业的参与增加,以在国家内部和外部提供基于太空的通信。专注于实现基于太空的通信系统,以解决由于国家安全问题或经济因素而无法有效,负担得起和可靠地满足商业印度行业的要求。为商业印度工业提供及时,响应迅速的监管环境,以建立和运营基于太空的通信系统。
摘要。本文简要回顾了卫星和航天器的电力推进技术。电力推进器,也称为离子推进器或等离子推进器,与化学推进器相比,其推力较低,但由于能量与推进剂分离,因此可以实现较大的能量密度,因此在太空推进方面具有显著优势。尽管电力推进器的发展可以追溯到 20 世纪 60 年代,但由于航天器上可用功率的增加,该技术的潜力才刚刚开始得到充分发挥,最近出现的全电动通信卫星就证明了这一点。本文首先介绍了电力推进器的基本原理:动量守恒和理想火箭方程、比冲和比推力、性能指标以及与化学推进器的比较。随后,讨论了电源类型和特性对任务概况的影响。根据推力产生过程,等离子推进器通常分为三类:电热、静电和电磁装置。通过讨论电弧喷射推进器、MPD 推进器、脉冲等离子推进器、离子发动机以及霍尔推进器及其变体等长期存在的技术,介绍了这三个组以及相关的等离子放电和能量传输机制。随后讨论了更先进的概念和性能改进的新方法:磁屏蔽和无壁配置、负离子推进器和磁喷嘴等离子加速。最后,分析了各种替代推进剂方案,并研究了近期可能的研究路径。
由于太空物体数量不断增加,碎片撞击运行中的航天器变得越来越常见。样本返回任务表明发生了数百次小撞击,但通常只有在撞击导致航天器性能异常时才会进行严格分析。开发识别和评估不会立即导致异常行为的小撞击的技术有助于验证碎片群模型、进行风险评估并帮助确定未来异常的归因。本研究将碎片撞击引入航天器动力学模拟并评估其对航天器遥测的影响。各种信号处理和变化检测技术用于识别嘈杂遥测中的撞击并估计撞击参数。开发了匹配滤波器小波来识别对状态遥测的影响,其中误差由航天器姿态控制系统自主校正。一组匹配滤波器用于根据对航天器响应特性的先验知识来估计撞击的参数。使用顺序概率比测试来突出显示航天器角动量的突然变化。进行蒙特卡罗分析以表征这些算法的性能。在正确识别碎片撞击和准确估计撞击参数方面,比较了各种技术的结果。开发对小型碎片撞击进行分类和表征的能力使任何航天器都可以用作现场碎片传感器。
与作家雷蒙·斯尼奇的小说相反,促使我撰写这篇论文的是《一系列幸运事件》。我没有时间和空间来汇编这些事件,但我会尽力记住所有使这些成为可能的人。首先,我要感谢我的导师 Juraj Poliak 博士给我机会在论文开发期间与他和他的团队合作。我还要感谢我的团队负责人 Ramon Mata Calvo 博士和我在 DLR-KN 这几个月遇到的所有同事。其中,特别要感谢 DLR-KN 的学生同事:Cesar、Michael、Joana、Mareen 和所有其他人,他们是珍贵的陪伴和愉快的午餐(有时是晚餐)伙伴。我要感谢我在都灵理工大学期间遇到的所有朋友和大学同事,他们是我的第二个家庭,即使相隔千里,他们也一直支持我。感谢 Francesco MD、Claudio、Gaetano、Alessandro、Nicolò、Francesco G.、Luca、Davide、Vito、Alessio P.、Alessio L.、Mariano 和 Niki。我还要感谢 Cubesat PoliTo 团队及其所有成员。最后但并非最不重要的是,我要感谢我的家人,尤其是我的父母,他们总是支持我做出的人生决定,即使他们并不完全理解背后的原因。
自 1985 年以来,一项技术计划一直在进行,旨在开发用于航天器的耐高温氧化推进器。这项技术的成功开发将为设计性能更高、羽流污染更少的卫星发动机奠定基础。或者,这项技术计划将提供一种具有高热裕度的材料,使其能够在常规温度下运行,并延长可加燃料或可重复使用的航天器的使用寿命。新的腔室材料由铼基体组成,表面涂有铱以防氧化。这种材料将推进器的工作温度提高到 2200°C,比目前使用的硅化物涂层铌腔室的 1400°C 有显著提高。用铱涂层铼制造的 22 N 级空间保持发动机的稳态比冲比铌腔室高 20 到 25 秒。预计 Ir-Re 远地点 440 N 级发动机将额外提供 10 到 15 秒。这些改进的性能是通过减少或消除燃烧室内的燃油膜冷却要求,同时以与传统发动机相同的总混合比运行而实现的。该项目试图将飞行资格要求纳入其中,以降低飞行资格项目的潜在风险和成本。