Partha Chakrabarti博士,CSIR IICB pchakrabarti@iicb.res.res.in sinjay Singh csir csir ceri ceeri sinjay sinjay sinjay sinjay sinjay ; Sanjay Kumar博士,csir-nml sunju@nmlindia.org S P Das博士,CSIR-IMMT spdas@immt.res.res.r. in P. Sujatha devi博士,CSIR-NIIST PSUJATHADEVI@NIIST.RES.NIIST.RES.NIIST.RES.INS.IN csir-apri cksangi@immt.res.res.in Ashok Kumar博士,csir-cbri ashokkumar@cbri.res.res.res.r.in shri s negi,csir-cbri sknegi@cbri@cbri@cbri.res.in e madhu博士Asokan Pappu,csir-mbri pasokan@ampri.res.res.ins saptarshi sasmal博士,csir-serc saptarshi@serc.res.res.res.res.r.in p harikrishna博士Partha Chakrabarti博士,CSIR IICB pchakrabarti@iicb.res.res.in sinjay Singh csir csir ceri ceeri sinjay sinjay sinjay sinjay sinjay ; Sanjay Kumar博士,csir-nml sunju@nmlindia.org S P Das博士,CSIR-IMMT spdas@immt.res.res.r. in P. Sujatha devi博士,CSIR-NIIST PSUJATHADEVI@NIIST.RES.NIIST.RES.NIIST.RES.INS.IN csir-apri cksangi@immt.res.res.in Ashok Kumar博士,csir-cbri ashokkumar@cbri.res.res.res.r.in shri s negi,csir-cbri sknegi@cbri@cbri@cbri.res.in e madhu博士Asokan Pappu,csir-mbri pasokan@ampri.res.res.ins saptarshi sasmal博士,csir-serc saptarshi@serc.res.res.res.res.r.in p harikrishna博士
本研究探讨了航空航天工业使用的各种材料回收方法,特别是与航空航天材料的可重复使用性进行比较,目的是找到飞机回收材料的用途,特别是聚醚醚酮 (PEEK) 和铝。通过对其他各种材料缓解方法的分析,显然材料经过回收过程后的物理降解和回收成本是阻碍航空航天工业能够 100% 回收飞机的最突出问题。通过对再加工后材料的物理特性进行比较,发现有几种材料符合行业标准,同时仍然有利可图,例如 PEEK 和铝。通过使用新的制造方法,这些材料足够坚固,可以用作飞机的结构部件,但是,航空航天工业需要努力使材料和方法保持一致。
增材制造通常被称为 3D 打印,它彻底改变了高性能材料的开发和应用,从根本上改变了航空航天工程的格局。这项变革性技术为制造具有复杂几何形状和定制材料特性的组件开辟了新的可能性,而这些组件以前是传统制造方法无法实现的。增材制造对航空航天材料的影响是深远的,从性能优化到成本降低和创新加速。增材制造在航空航天领域最显著的优势之一是它能够生产具有复杂几何形状的组件,而使用传统的减材制造方法无法实现或极不切实际 [1]。
到连续波(CW)HSR信号排除足够的有效穿透深度。确实是,hsr的基本物理学使用了CW信号,但不允许稍后放大(即更深的)到达有损培养基中(如脉冲地下雷达(ISR),HSR可能是可能的,但HSR具有不同的优势。其中最重要的是能够以ISR无法实现的分辨率进行较浅的地下成像。此外,由于相对较低的技术传输和接收触角,因此HSR系统的设计比ISR更简单。本文通过光学类比对HSR的主要原理进行了回顾,并描述了雷达全息图重建的可能算法。我们还介绍了Rascan类型的系统和应用的历史,这可能是唯一可商购的全息图地下雷达。在考虑的地下成像和遥感中,所考虑的是人道主义的脱落,建筑检查,对电介质航空航天材料的非破坏性测试,历史建筑和艺术品的调查,古生物学和安全筛查。用实验室和/或现场实验中获得的相关数据说明了每个应用程序。
银河宇宙辐射的健康影响是对太阳系的机组人员探索的严重障碍。oltaris是3DHZETRN确定辐射传输代码的界面,用于评估航空航天材料对这种恒定辐射暴露的响应。传统的航空航天结构材料(如铝制)可以在一定的质量后增加这种辐射的健康影响。但是,原子质质量较低的材料可能会随着面积密度的增加而在二次辐射中减轻这种堆积。因此,镁和镁的下部原子质量结构合金是有希望的候选者。这些合金用铝合金代替时可能会减少结构的质量。用碳化硼加强可以进一步减少原子质量,同时还可以改善这种轻质合金的机械性能。这项研究发现,这些材料的下部原子质量增加了宇宙辐射相互作用时的核破碎化,从而导致次级(中子)辐射光谱的软化。与铝相比,这种软光谱可降低镁(-lithium)合金及其碳碳碳碳化合物碳化合物的合金的有效剂量等效量,与铝相比。
• 电气与计算机工程:VLSI 设计、可再生能源系统和智能电网、电力电子和电力驱动、无传感器电力驱动、电动汽车、电动汽车充电、网络物理系统、电力电子系统的网络安全、燃料电池、混合储能系统、生物医学信号处理、生物识别和计算机视觉、超越 CMOS 的 VLSI 设计、无线通信、5G 和海量物联网、VLSI 中的机器学习、物理设计自动化算法、半导体器件、用于高频应用的高电子迁移率晶体管建模、用于低功耗逻辑实现的忆阻器逻辑、用于内存计算(IMC)的低功耗可靠存储器、用于空间应用的 SRAM、高性能感测放大器设计、用于无线通信的深度学习、无线电资源管理、MIMO 通信、非正交多址技术、PHY 和 MAC 层的优化、动态频谱接入、用于半导体应用的高 k 纳米材料的合成 • 化学:混合聚合物和纳米材料、响应性聚合物;用于储能应用的过渡金属氧化物和氮化物纳米结构的设计和合成;设计用于氢能的生物催化剂,用于柔性电子的二维材料•数学:数值分析;微分方程;偏微分方程分析;图像处理;随机控制;概率和统计;流体动力学;运筹学;工业和教育中的调度和时间表制定;有限群论;数值线性代数;和机器学习、金融数学•机械与航空航天工程:计算力学、理论固体力学、太阳能热能、制冷与空调、电池热管理、传热、微流体、生物流体动力学、生物力学建模与仿真、纳米材料、网络物理系统、先进制造系统、机器人、缆绳驱动机器人、外骨骼、外骨骼、无人机、钛合金 Ti6AI4V 板料成型、航空航天材料成型、轧制、航空航天材料制造过程模拟、增材制造、激光制造方法、增材制造的数值建模与仿真、先进精加工工艺等、智能制造、i4.0、工业工程、计算机辅助设计、湍流建模、燃烧建模、大涡模拟、直接数值模拟、湍流-化学相互作用、摩擦学、高超音速层流到湍流转变、采用氢和氢燃料的超燃冲压发动机推进、高速流动中的再生冷却、计算涡轮机械、高速反应和非反应流动中的 CFD 代码开发。
ALA 集团领导层 ALA SpA (www.alacorporation.com) 是意大利的领先企业,也是全球领先的航空航天和航天工业产品及零部件综合物流服务和分销企业之一。该公司还从事铁路和能源行业产品及零部件的分销和综合物流。 ALA SpA 成立于 2009 年,由在该领域拥有 30 多年经验的企业家 Fulvio Scannapieco 和 Vittorio Genna 创立,是一家意大利集团,30 多年来一直从事航空航天业和工业市场的分销、物流和服务供应工作。 ALA 开展的主要业务包括:i) 服务提供商活动,通过该活动,公司代表全球领先的结构、部件和发动机制造商管理航空航天材料,为公司提供“即时”材料采购,处理需求计划、供应商管理、材料采购和质量控制及相关存储、DLF 供应和其他供应链管理活动; ii) 分销活动,ALA 通过为主要飞机制造商和生产商 (OEM) 以及其众多一级和二级 (Tier 1 和 Tier 2) 零件和组件供应商进行材料交易来开展分销活动。该公司还为石油和天然气、铁路和海军领域的主要客户分销材料。背景在过去几年中,ALA 集团对公司流程进行了深刻的重组,并