网络战略计划 (NSP) 是一份战略文件,用于指导网络的长期发展,并定义实现所需 ATM 性能水平所需的网络战略运营目标。网络管理委员会 (NMB) 于 2019 年 6 月批准了 2020-2029 年期间的 NSP,欧盟委员会 (EC) 于 2019 年 12 月 17 日以委员会实施决定 (EU) 2019/2167 的形式批准了该 NSP。NSP 将在下一个参考期开始前至少 12 个月进行进一步更新,即最迟在 20234。网络运营计划 (NOP),包括多年期和滚动季节性版本,是通过协作决策在短期和中期在运营层面实施 NSP 的主要工具。5 年 NOP 每年至少更新两次,而滚动 NOP 每周更新一次。
第 1 章 一般信息 特伦特-塞文水道 _______________________________________ 1-4 历史背景 ______________________________________________________ 1-5 航行注意事项 ____________________________________________ 1-6 水位 _______________________________________________ 1-9 水流 ___________________________________________________ 1-9 气象信息 ___________________________________ 1-10 出版物 _______________________________________________ 1-11 规定 _______________________________________________ 1-11 助航设施 __________________________________________ 1-13 电缆 ___________________________________________________ 1-14 无线电的使用 _______________________________________________ 1-14 搜索和救援 __________________________________________ 1-16
我感谢所有利益相关者通过 LSSIP+ 工具参与 SESAR 部署计划 (SDP) 监测视图并做出重要贡献。本期报告尤为重要,因为它将首次展示共同项目 1 条例的实施情况,而此时利益相关者仍在遭受新冠疫情连续爆发带来的艰难经济形势的困扰。SDP 监测视图中的结果将使 SDM 有机会识别风险、支持利益相关者并加速部署。
当务之急是防止新冠病毒传播。出发前巡航训练中队所有成员均已完成新冠疫苗接种、聚合酶链反应(PCR)检测阴性,并接受了为期两周的预防性隔离。启航后,立即将快速抗原检测试剂、聚合酶链式反应(PCR)检测设备、危重疾病治疗药品等装载上船,并加强增派医务人员、运营船上隔离区域、进行港口活动时穿着隔离服等预防措施,阻断疫情蔓延。 3)2021年巡航训练期间,美国阿拉斯加州州长、加拿大维多利亚州参议员、韩国国防部长官(关岛)
附件 B:综合机场;13.1 先进网络综合 (ANI) 机场的优势;13.2 A-CDM 的优势;13.3 先进 ATC TWR 机场的优势;13.4 对综合机场网络运营的影响 13.5.1 DPI 消息;13.5.2 DPI 类型;13.5.3 暂停航班;13.5.4 航班列表中的 CDM 状态;13.5.5 ANI 机场的消息摘要;13.5.6 A-CDM 和先进 ATC TWR 机场的消息摘要;13.6 到达计划信息 (API);13.6.1 API 消息;13.6.2 API 类型;13.6.3 API 消息摘要
课程大纲................................................ ...................................................... ...................................................... 2 导航和安全简介。 ...................................................... ................................................... 3 I - 导航。 .................................................. .................................................. 6 我 – 1 – 我在地球上哪里? ...................................................... ...................................................... ...................... 7 I – 2 - 导航地图。 ...................................................... ...................................................... .......... 15 I – 3 - 导航的基本原理。 ...................................................... ...................................... 20 I - 4 – 不同的导航方法。 ...................................................... ...................................... 25 I - 5 – 导航仪器。 ...................................................... ...................................................... 27 I – 6 – 无线电导航。 ...................................................... ...................................................... ................................. 28 II - 航空法规 ................................................. ................................... 31 II – 1 – 航空组织 ...... .................................................. …………
注意:本机载防撞系统 (ACAS) 指南旨在帮助理解 ACAS 系统并培训参与 ACAS 操作的人员。但是,它本身并非为管制员或飞行员的完整培训而设计。如需深入了解,建议读者参考参考书目部分列出的文档。本指南重点介绍 TCAS II 版本 7.1 的操作原理和技术细节,因为这是目前在欧洲强制执行和运行的版本。还简要介绍了之前的 TCAS II 版本 6.04a 和 7.0 以及 TCAS I 系统。此外,即将推出的 ACAS Xa/Xo 系统也得到了广泛介绍,但需要注意的是,在本 ACAS 指南发布时,该系统尚未获准在欧洲空域运行。不涵盖用于通用航空或军用飞机的其他非标准化交通意识系统,如 FLARM 和便携式防撞系统 (PCAS)。本指南、欧洲空中导航安全组织 ACAS II 公告和培训演示文稿中包含的信息基于国际民航组织的规定和其他适用法规。信息在发布时被认为是准确的,但可能会发生变化。致谢 本 ACAS 指南由欧洲空中导航安全组织在 QinetiQ 的帮助下开发。本指南的原始版本(2012 年)是与德国航空公司飞行员协会 (Vereinigung Cockpit) 合作开发的,部分基于 2000 年为欧洲空中导航安全组织 ACASA 项目(ACAS 分析)开发的 ACAS II 手册。CENA(航空导航研究中心)和欧洲空中导航安全组织为该手册的开发做出了贡献。本指南的某些部分基于 FAA 发布的 TCAS II 简介版本 7.1 小册子中包含的信息。
注意:本机载防撞系统 (ACAS) 指南旨在帮助理解 ACAS 系统并培训参与 ACAS 操作的人员。但是,它本身并非为管制员或飞行员的完整培训而设计。如需深入了解,建议读者参考参考书目部分列出的文档。本指南重点介绍 TCAS II 版本 7.1 的操作原理和技术细节,因为这是目前在欧洲强制执行和运行的版本。还简要介绍了之前的 TCAS II 版本 6.04a 和 7.0 以及 TCAS I 系统。此外,即将推出的 ACAS Xa/Xo 系统也得到了广泛介绍,但需要注意的是,在本 ACAS 指南发布时,该系统尚未获准在欧洲空域运行。不涵盖用于通用航空或军用飞机的其他非标准化交通意识系统,如 FLARM 和便携式防撞系统 (PCAS)。本指南、欧洲空中导航安全组织 ACAS II 公告和培训演示文稿中包含的信息均基于国际民航组织的规定和其他适用法规。这些信息在发布时被认为是准确的,但可能会发生变化。致谢 本 ACAS 指南由欧洲空中导航安全组织在 QinetiQ 的帮助下开发。本指南的原始版本(2012 年)是与德国航空公司飞行员协会 (Vereinigung Cockpit) 合作开发的,部分基于 2000 年为欧洲空中导航安全组织 ACASA 项目(ACAS 分析)开发的 ACAS II 手册。CENA(航空导航研究中心)和欧洲空中导航安全组织为该手册的开发做出了贡献。本指南的某些部分基于 FAA 发布的 TCAS II 简介版本 7.1 小册子中包含的信息。
用于为海洋中的无人水下航行器 (UUV) 或自主传感系统提供动力的热梯度能量产生技术主要处于研发阶段或以有限的规模商业化应用,而盐度梯度能量产生技术尚未得到充分研究。对适合长期部署的自供电 UUV 的需求日益增长,需要进一步研究小规模海洋梯度能量系统。在本研究中,我们对利用海洋热梯度或盐度梯度能量为 UUV 提供动力进行了全面的回顾,重点关注滑翔机和剖面浮标。基于相变材料 (PCM) 的 UUV 热梯度能量系统无法提供为自主传感系统提供动力所需的能量,因为这些系统的能量转换效率低。除了通过开发更高效的机电系统来降低能耗之外,增强 PCM 的热导率还可以通过提高 UUV 的发电率来帮助应对这一挑战。其他一些新兴技术,如热电发电机、形状记忆合金和小型热力循环系统,已显示出为 UUV 提供动力的潜力,但它们仍处于实验室测试或概念设计阶段。基于盐度梯度、反电渗析和压力延迟渗透的最先进发电技术在经济上仍然不适合大规模部署,主要是因为在恶劣的盐环境中运行所需的组件成本高昂。我们的可行性评估表明,现有的盐度梯度发电技术不能直接为公海中的 UUV 提供动力。
初步飞行计划 初步飞行计划包括运营商与创建飞行计划以及与将参与飞行的选定 eASP 达成一致的行动(eASP 的选择基于交通复杂性等考虑因素)。这可以通过 FF-ICE 初步飞行计划 (PFP) 提交程序来支持,以制定如果提交则应可接受的飞行计划。在欧洲,NFPM 将向其他 NM 服务(例如 ATFM)提供可接受的 PFP,以促进提高飞行意图意识。提交 初步飞行计划以提交 eFPL 结束。此后,除非先取消航班,否则不再接受 PFP 提交。提交完成后,NFPM 重新评估流程将继续确保商定轨迹与任何变化的条件或限制保持同步。通过归档服务(飞行计划 (eFPL) 更新程序),可以在整个飞行生命周期内继续更新 eFPL。在出发准备和飞行执行期间继续规划活动 在出发准备的某个阶段,第一个 ATC 单位将参与飞行并发生过渡,在此之后,应使用飞行数据更新/修订程序对飞行数据进行任何进一步的更改。这包括支持传播飞行数据更新,这些更新源于 ATC 运营等活动以及对任何进一步网络级规划提案的合作协议。
