远程网络节点共享的量子纠缠是有望在分布式计算,加密和感应中应用的宝贵资源。然而,由于纤维中的各种反矫正机制,通过填充途径分发高质量的纠缠可能是具有挑战性的。尤其是,光纤维中的主要极化解相机制之一是极化模式分散(PMD),这是通过随机变化的双向反射方式对光脉冲的失真。为了减轻纠缠颗粒中的分解作用,已经提出了量子纠缠蒸馏(QED)算法。一个特定类别的QED算法的一个特定类别之所以脱颖而出,是因为它在所涉及的量子电路的大小和粒子之间的纠缠初始质量上都具有相对放松的要求。但是,由于所需颗粒的数量随着蒸馏弹的数量而成倍增长,因此有效的复发算法需要快速收敛。我们提出了一种针对受PMD降级通道影响的光子量子置量对的复发QED算法。我们提出的算法在每一轮蒸馏中都实现了最佳的确定性以及最佳成功概率(根据实现最佳限制的事实)。最大化的实现可提高从线性到二次的蒸馏弹数,从而提高了效能的收敛速度,因此显着减少了回合的数量。结合了达到最佳成功概率的事实,所提出的算法提供了一种有效的方法,可以通过光纤维具有很高的纠缠状态。
Quantum密钥分布(QKD)是未来信息安全的关键技术。在多个用户中开发简单有效的方法来估算QKD,对于扩展QKD在通信网络中的应用很重要。在此,我们提出了一种对称色散光学QKD的方案,并基于IT展示了基于纠缠的量子网络。在实验中,最终用户通过波长和空间分层多路复用共享了宽带纠缠的光子对源。将产生的量子对较广的光子对分为16个组合频率。每个通道组合中的光子对支持一个被动梁分离器与八个用户的完全连接的子网。最终,它表明,基于纠缠的QKD网络超过100个用户可以由此体系结构中的一个纠缠光子对来支持。它对具有较大用户数量的本地量子网络的应用具有很大的潜力。
摘要。散射现象会影响光从自由空间到生物组织在任何介质中的传播。寻找适当的策略来提高对散射的鲁棒性是开发通信协议和成像系统的共同要求。最近,结构光因其在透射率和空间行为方面似乎具有抗散射性而受到关注。此外,光偏振和轨道角动量 (OAM) 之间的相关性(表征所谓的矢量涡旋光束 (VVB) 状态)似乎允许保留偏振模式。我们通过研究在不同浓度的散射介质中传播的矢量光涡旋的空间特征和偏振结构来扩展分析。在观察到的特征中,我们发现当采用的散射介质浓度超过 0.09% 时,高斯、OAM 和 VVB 模式的对比度突然迅速下降。我们的分析为结构光在色散和散射介质中的传播提供了更全面和完整的研究。
1。简介石墨及其工业用途的发现可以追溯到16世纪,即在第1届工业革命之前的200多年,该革命是从18世纪中期到19世纪中期。石墨的第一次工业用途是用作铅笔铅和降压材料。现在用于包括核能在内的各种高科技领域。每年生产超过120万吨石墨,未来需求的上升趋势。石墨廉价且分布在世界范围内。根据可验证的资料来源,存在数百年来满足需求的储备。现有的石墨供应几乎是有限的。一旦将石墨的碎屑剥落,它就会成为一种令人着迷的材料,称为“石墨烯”,这是一个令人惊叹的发现,直到2004年才发生。石墨烯比铁钢强1000倍,其电导率和导热性的10倍以上是金属,并且是当今已知的最薄,最轻巧的功能。2010年,诺贝尔物理学奖因其发现而获得。创新的材料和产品可以使用石墨烯在各种领域创建。因此,世界各地的研究机构和公司几乎将石墨烯的实际应用中的研究和开发进行。在发现以来的几年中,已经开发了电子产品,声学产品,声学产品,每日商品,轮胎,高尔夫球,运动服和鞋子,从而利用石墨烯来提高冲击强度,电导率特征等。