摘要:数十年来,合成染料和颜色一直是色素行业的支柱。研究人员渴望找到更环境友好和无毒的替代品,因为这些合成染料对环境和人们的健康有负面影响。微生物色素可能是合成色素的替代品。微生物色素被归类为二级代谢产物,主要是由于压力条件下的代谢受损而产生的。与合成色素相比,这些色素具有鲜艳的阴影,具有营养和治疗特性。微生物颜料现在被广泛用于药品,食品,油漆和纺织工业。当前使用细菌色素作为癌症和许多其他细菌感染的药物替代品。他们日益增长的受欢迎程度是其低成本,可生物降解,非癌性和环境利益属性的结果。这篇审计文章已努力深入研究细菌颜料在食品和制药行业中的现有用途,并投射其潜在的未来应用。
目的:本文书旨在延长 CPS 001/2021 的有效期,修订“第 11 条 - 有效性”,并应以以下措辞生效:“第 11 条 - 有效性有效期自 2024 年 1 月 20 日起再延长 12(十二)个月,并可根据承包商的采购条例通过修订进行延长。”
癌症是全球社会经济的重要负担,因为每年发生数百万个新病例和死亡。在2020年,全世界记录了近1000万次癌症死亡。癌症基因疗法的进步已彻底改变了癌症治疗的景观。具有有希望的癌症基因治疗潜力的方法是将基因引入编码化学疗法前药代谢酶的癌细胞,例如细胞色素P450(CYP)酶,这可以有效消除癌细胞。这可以通过基因定向的酶前药治疗(GDEPT)来实现。CYP酶可以进行基因设计,以改善抗癌前药转化为活性代谢物,并通过减少前药剂量来最大程度地减少化学疗法副作用。有理设计,定向进化和系统发育方法是开发量身定制的CYP酶进行癌症治疗的方法。在这里,我们提供了旨在建立能够生物激活不同化学治疗前药的高度有效的治疗基因的CYP酶进行遗传修饰的汇编。此外,本综述总结了有希望的临床前和临床试验,强调了工程化的CYP酶在GDEPT中的潜力。最后,讨论了在癌症基因治疗中使用CYP酶进行GDEPT的挑战,局限性和未来方向。
摘要 在真核生物中,血红素通过两个硫醚键附着到线粒体细胞色素 c 和 c 1 上,由多亚基细胞色素 c 成熟系统 I 或全细胞色素 c 合成酶 (HCCS) 催化。前者是从线粒体的 α 变形菌祖先遗传而来;后者是一种真核创新,其原核祖先并不明显。HCCS 是真核生物中从头蛋白质创新的少数几个例子之一,但对 HCCS 的结构功能了解有限。独特的是,眼虫原生生物(包括医学上相关的动基体锥虫和利什曼原虫寄生虫)通过单个硫醚键将血红素附着到线粒体 c 型细胞色素上。但该机制尚不清楚,因为缺乏编码与其他分类群中参与细胞色素 c 成熟的蛋白质具有可检测相似性的蛋白质的基因。在这里,通过生物信息学搜索所有含血红素蛋白的动质体中保守的蛋白质,鉴定出动质体细胞色素 c 合成酶 (KCCS),我们发现它是必需的和线粒体的,能催化血红素附着到锥虫细胞色素 c 上。KCCS 与其他蛋白质没有序列同一性,除了四个短基序内的轻微相似性表明与 HCCS 相关。因此,KCCS 为研究真核细胞色素 c 成熟提供了一种新的资源,可能具有更广泛的相关性,因为人类 HCCS 的突变会导致疾病。此外,与许多其他真核生物相比,眼虫的许多线粒体生物化学例子都不同;因此,KCCS 的鉴定为进化分化的原生生物群体中极端、不寻常的线粒体生物化学提供了另一个典范。
混合电子离子导体对于各种技术至关重要,包括在耐用,自我维持的,不受位置或环境1,2的不受限制的方式中从湿度中收获能力。已经提出了50年的混合导体3,4。最近,据称Geobacter Sulfurreducens Pili丝是发电5,6的纳米线。在这里,我们表明该功率是由G.硫核的生产的细胞色素OMCZ纳米线产生的,其电子电导率比Pili 7高20,000倍。非常明显的是,由于定向电荷通过无缝堆叠的Hemes和带电的氢键表面,纳米线显示了超高电子和质子迁移率(> 0.25 cm 2 /vs)。AC阻抗光谱和直流电导率测量,使用四个探针范德布尔和背门效率 - 效应 - 横向器设备表明,湿度会使载流子的迁移率提高30,000倍。冷却将激活能量减半,从而加速电荷传输。电化学测量结果确定将纯电子传导转换为发电的混合传导所需的电压和迁移率。高纵横比(1:1000)和亲水性纳米线表面可有效捕获水分以逆转降低氧气,从而产生巨大的电位(> 0.5 V),以维持高功率。我们的研究建立了一类新的生物合成,低成本和高性能的混合导管,并确定了使用高度可调的电子和蛋白质结构来提高功率输出的关键设计原理。
本研究旨在将细菌从白色的卵中分离出来,这些细菌可以产生颜料,并可能在纺织工业中用作染料。通常,细菌出于各种原因产生色素,并且起着重要作用。细菌产生的一些色素显示出针对病原体的抗菌活性。这些细菌产生的这些抗菌剂或物质成功地用于预防和治疗微生物疾病。诸如类胡萝卜素,黑色素,黄素,维紫素,protigiosin之类的色素对许多致病细菌显示出明显的抗菌作用。被污染的卵可能会产生细菌,例如沙门氏菌属,proteus spp。,bacillus spp。,pseudomonas spp。和葡萄球菌属,它们的鞭毛可以使它们穿过毛孔。通过使用有机溶剂提取这些细菌,并以薄层色谱法进行纯化和特征,并优化为染色参数。获得的染料是化学染料的替代来源。
奇异球菌能够在高辐射、极端温度和干燥等恶劣环境中生存,主要归因于其能产生独特的色素,尤其是类胡萝卜素。尽管这些细菌产生的天然色素数量有限,限制了它们的工业潜力,但代谢工程和合成生物学可以显著提高色素产量,扩大其应用前景。在本研究中,我们回顾了与这些色素相关的关键酶和基因的性质、生物合成途径和功能,并探索了通过基因编辑和优化培养条件来提高色素产量的策略。此外,研究还强调了这些色素在抗氧化活性和抗辐射性方面的独特作用,特别强调了奇异球菌中脱黄素的关键功能。未来,奇异球菌细菌色素将在食品工业、药物生产和太空探索中具有广阔的应用前景,它们可以作为辐射指示剂和天然抗氧化剂,保护宇航员在长期太空飞行中的健康。
图1显示了稀释方法对Mibefradil(Posicor®)评估CYP3A4 MDI可逆性的影响。图1A表明,当30分钟的预孵育步骤与低浓度的HLM(0.05 mg/ml)连接时,低浓度的Mibefradil(0.1 µM)In- in-biN-In-biN-In-inbiTs CYP3A4活性以时间依赖性方式且无稀释。图1b显示,当与HLM(1.25 mg/ml)的25倍高25倍的HLM(1.25 mg/ml)预孵育时,Mibefradil(0.1 µM)几乎不会抑制CYP3A4,然后进行25倍稀释,然后在测量残余CYP3A44444的稀释之前。图1c表明,对于稀释方法,CYP3A4抑制在增加Mibefradil的浓度以与HLM浓度相同的比例(即。25倍至2.5 µm)。
1 伯尔尼大学 Inselspital 儿童医院儿科内分泌、糖尿病和代谢科,瑞士伯尔尼 3010;katyayani.sharma@unibe.ch(KS);angelolanzilotto@gmail.com(AL);jibira.yakubu@unibe.ch(JY);fsx728@alumni.ku.dk(ST);therina.dutoit@unibe.ch(TDT)2 伯尔尼大学生物医学研究系转化激素研究项目,瑞士伯尔尼 3010;clarissa.voegel@insel.ch 3 伯尔尼大学细胞与生物医学科学研究生院,瑞士伯尔尼 3012 4 哥本哈根大学药物设计和药理学系,丹麦哥本哈根 2100; fsj@sund.ku.dk 5 伯尔尼大学附属医院肾病和高血压科,3010 伯尔尼,瑞士 * 通讯地址:amit.pandey@unibe.ch;电话:+41-31-632-9637
附加声明:已报告存在竞争利益。AKV、RQK、MHL、SW、NV、AB 没有竞争利益。DL、CAP、JMB、RJC 和 JW 是 Janssen(强生公司)的全职员工和/或强生公司的潜在股东。JG、CV 和 DAL 已被列为 JNJ-2901 专利申请的发明人。