摘要:范德华 (vdW) 材料的垂直堆叠为二维 (2D) 系统的研究带来了新的自由度。层间耦合强烈影响异质结构的能带结构,从而产生可用于电子和光电子应用的新特性。基于微波显微镜研究,我们报告了门控二硫化钼 (MoS 2 )/二硒化钨 (WSe 2 ) 异质结构器件的定量电成像,这些器件在传输特性中表现出有趣的反双极效应。有趣的是,在源漏电流较大的区域,n 型 MoS 2 中的电子和 p 型 WSe 2 段中的空穴几乎平衡,而异质结构区域的移动电荷则耗尽。局部电导的空间演变可以归因于沿 MoS 2 − 异质结构 − WSe 2 线的横向能带弯曲和耗尽区的形成。我们的工作生动地展示了新传输行为的微观起源,这对于充满活力的范德华异质结研究领域非常重要。关键词:范德华异质结构、微波阻抗显微镜 (MIM)、反双极效应、能带排列、耗尽区
扭曲的二维(2D)Van der Waals(VDW)量子材料以其非同规性的超导性,金属绝缘体过渡(MOTT TRUSTITION),旋转液相等而闻名,为强电子相关提供丰富的景观。这种电子相关性也解释了扭曲晶体中的异常磁性。然而,由于缺乏理想的材料以及设计Moiré磁铁与它们的新兴磁性和电子特性相关的适当方法,因此限制了2D扭曲磁力领域的进步。在这里,我们设计了VDWMoiré磁铁,并证明了旋转两个单层的简单动作,即以各种扭曲角度旋转1T-NBSE 2和1T-VSE 2,产生了增强和淬灭的局部磁性磁矩的无均匀混合物,每个过渡金属杂种(V)和niobium(V)和Niobium(V)和NB)(NB)Antome。准确地说,扭曲角会影响每个组成层的局部磁矩。在VDWMoiréSuprattice中出现了引人注目的频带和巡回的铁磁性,后者令人满意的Stoner标准。这些特征是由原子晶格位点的轨道复杂化而不是层之间的层间耦合引起的。此外,在未介绍的杂波系统中鉴定出轨道磁性。结果提出了一种有效的策略,该策略是针对扭曲调节的现场磁性的新量子力学现象的洞察力。
[1] Akinwande,Deji等。“石墨烯和硅技术的二维材料”。自然573,507-518(2019)[2] Novoselov,Kostya S.等。“原子薄膜中的电场效应”。Science 306,666-669(2004)[3] Pham,Phuong V.等。 “无处不在电子和光电学的2D异质结构:原理,机遇和挑战。” 化学评论。 122,6514-6613(2022)[4] Liang,Shi-Jun等。 “用于高性能设备应用程序的范德华异质结构:挑战和机遇。” 高级材料32,27(2020)[5] Kwon,Oh Seok等。 “使用天然受体进行纳米材料传感器”。 化学评论119,36-93(2018)[6] Li,Xuesong等。 “铜箔上高品质和均匀石墨烯膜的大面积合成。” Science 324,1312-1314(2009)[7] Lee,Jae-Hyun等。 “单晶单层石墨烯在可重复使用的氢末端锗上的晶圆尺度生长。” Science 344,286-289(2014)[8] Moon,Ji-Yun等。 “石墨烯的层工程大区块去角质。” 科学进步6,4(2020)[9] Moon,Ji-Yun等。 “层工程的原子尺度散布2D范德华晶体。” 物质5,3935-3946(2022)[10] Moon,Ji-Yun等。 “通过原子剥落制备层工程范德华材料的方案。” 星形方案4,2(2023)[11] Kim,Sein等。 “非金属介导的大面积单层过渡金属二北核化物的原子剥落”。Science 306,666-669(2004)[3] Pham,Phuong V.等。“无处不在电子和光电学的2D异质结构:原理,机遇和挑战。”化学评论。122,6514-6613(2022)[4] Liang,Shi-Jun等。“用于高性能设备应用程序的范德华异质结构:挑战和机遇。”高级材料32,27(2020)[5] Kwon,Oh Seok等。“使用天然受体进行纳米材料传感器”。化学评论119,36-93(2018)[6] Li,Xuesong等。“铜箔上高品质和均匀石墨烯膜的大面积合成。”Science 324,1312-1314(2009)[7] Lee,Jae-Hyun等。 “单晶单层石墨烯在可重复使用的氢末端锗上的晶圆尺度生长。” Science 344,286-289(2014)[8] Moon,Ji-Yun等。 “石墨烯的层工程大区块去角质。” 科学进步6,4(2020)[9] Moon,Ji-Yun等。 “层工程的原子尺度散布2D范德华晶体。” 物质5,3935-3946(2022)[10] Moon,Ji-Yun等。 “通过原子剥落制备层工程范德华材料的方案。” 星形方案4,2(2023)[11] Kim,Sein等。 “非金属介导的大面积单层过渡金属二北核化物的原子剥落”。Science 324,1312-1314(2009)[7] Lee,Jae-Hyun等。“单晶单层石墨烯在可重复使用的氢末端锗上的晶圆尺度生长。”Science 344,286-289(2014)[8] Moon,Ji-Yun等。 “石墨烯的层工程大区块去角质。” 科学进步6,4(2020)[9] Moon,Ji-Yun等。 “层工程的原子尺度散布2D范德华晶体。” 物质5,3935-3946(2022)[10] Moon,Ji-Yun等。 “通过原子剥落制备层工程范德华材料的方案。” 星形方案4,2(2023)[11] Kim,Sein等。 “非金属介导的大面积单层过渡金属二北核化物的原子剥落”。Science 344,286-289(2014)[8] Moon,Ji-Yun等。“石墨烯的层工程大区块去角质。”科学进步6,4(2020)[9] Moon,Ji-Yun等。“层工程的原子尺度散布2D范德华晶体。”物质5,3935-3946(2022)[10] Moon,Ji-Yun等。“通过原子剥落制备层工程范德华材料的方案。”星形方案4,2(2023)[11] Kim,Sein等。“非金属介导的大面积单层过渡金属二北核化物的原子剥落”。小科学3,9(2023)[12] Shim,Jaewoo等。“用于原子精度处理晶片尺度二维材料的控制裂纹繁殖。”Science 362,665-670(2018)[13] Lee,Yong Hwan等。“通过受控的剥落者的si-50μm-thick-thick-thick-thick-thick-thick-thick-thick si wafers的原子层 - 沉积(ALD)AL2O3-papsivected(ALD)。电子材料信件14,363-369(2018)[14] J.和Hutchison和T. Wu。 “应用机制的进步。 卷。 27。 学术出版社,1990年。 [15] Bedell,Stephen W.等。 “通过受控的剥落来转移层。” 物理学杂志D:应用物理学46,15(2013)[16] Li,Ning等。 “通过3D剥落启用的单晶柔性电子设备。” 高级材料29,18(2017)和Hutchison和T. Wu。“应用机制的进步。卷。27。学术出版社,1990年。[15] Bedell,Stephen W.等。“通过受控的剥落来转移层。”物理学杂志D:应用物理学46,15(2013)[16] Li,Ning等。“通过3D剥落启用的单晶柔性电子设备。”高级材料29,18(2017)
在两个半导体之间具有不同类型的掺杂类型的半导体之间的静电仪,是P - N交界处的核心,这是几种电子和光电设备后面的基础,包括校正二极管,光电探测器,光载体 - 诸法索尔细胞以及光 - 发光二氧化碳。1超出了由外延半导体生长制造的传统设备,二维材料的出现(2D材料)引起了人们对范德华P - N交界原型的兴趣。2 - 5虽然这些设备尚未与传统的半导体进行典型应用的效率,但范德华(Van der Waals)具有简化的优势,并且在材料选择方面具有可观的实验性原型。取决于特定c成分的属性,p - n连接
摘要:二维(2D)范德华异质结合了单个2D材料的独特特性,导致超材料,非常适合新兴的电子,光电,光电和自旋形成现象。在利用这些特性用于未来的混合电路方面的一个重大挑战是它们的大规模实现并集成到石墨烯互连中。在这项工作中,我们证明了二硫化钼(MOS 2)晶体在图案化石墨烯通道上的直接生长。通过通过限制的空间化学蒸气沉积生长技术增强对蒸气转运的控制,我们实现了单层MOS 2晶体在单层石墨烯上的优先沉积。原子分辨率扫描透射电子显微镜揭示了杂结构的高结构完整性。通过深入的光谱表征,我们在石墨烯/MOS 2中揭示了电荷转移,MOS 2将p-型掺杂到石墨烯中,如我们的电气测量所证实。光电导率表征表明,可以在MOS 2层覆盖的石墨烯通道中局部创建光活性区域。时间分辨超快的超快瞬态吸收(TA)光谱揭示了在石墨烯/MOS 2异质结构中加速的电荷衰减动力学,对于以下带隙激发条件的上转换。我们的概念验证结果为范德华异质结构电路的直接增长铺平了道路,对超快光活性纳米电子和播客应用具有重要意义。关键字:石墨烯,TMD,现场效应晶体管,范德华异质结构,超快,光活动电路■简介
自从在 Cr 2 Ge 2 Te 6 [1] 和 CrI 3 [2] 的单层和双层中发现长程磁序以来,许多单层或几层厚度的(反)铁磁范德华材料已被发现。由于层间和层内交换以及磁各向异性的相互作用导致自旋纹理丰富,它们是自旋电子学的理想平台。许多反铁磁范德华材料在低温下是电绝缘的,这意味着不存在自由载流子引起的磁化衰减。因此,它们对于研究磁序的集体激发,即自旋波及其量子,磁振子 [3, 4] 具有吸引力。传统磁体中的磁振子输运已得到广泛研究,例如,通过自旋泵浦 [5]、自旋塞贝克效应 (SSE) [6] 和电磁振子自旋注入/检测 [7]。反铁磁体赤铁矿 [8]、氧化镍 [9] 和 YFeO 3 [10] 中的长距离磁振子传输已被证实。低阻尼亚铁磁钇铁石榴石 (YIG) 超薄膜是高效磁振子传输的首选材料,它以强烈增强的磁振子电导率形式显示出二维 (2D) 相对于三维 (3D) 传输的有益效应 [11]。温度梯度驱动的磁振子自旋输运 (SSE) [12] 已被报道存在于铁磁和反铁磁范德华材料中 [13, 14]。然而,局部和非局部 SSE 仅提供有关磁振子传输特性的复杂信息。热磁振子电流是由整个样品中的热梯度产生的,因此很难区分磁振子弛豫长度和磁振子自旋电导率 [7, 11]。CrCl 3 [15] 的反铁磁共振揭示了声学和光学磁振子模式的存在,但并未解决它们在自旋输运中的作用。因此,为了评估范德华磁体在自旋电子学应用中的潜力,我们必须研究由微波或我们将在此处展示的电注入局部产生的磁振子的传播。
具有纳米级尺寸,高密度和低能消耗的未来自旋设备的希望激发了人们对范德华的异质结构的搜索,从而稳定拓扑受保护的旋转自旋纹理,例如磁性天空和域壁。将这些引人注目的特征转化为实用的设备,一个关键的挑战在于实现对磁各向异性能量的有效操纵和Dzyaloshinskii-Moriya(DM)相互作用,这是确定天空的两个关键参数。通过第一个原理计算,我们证明了二维Fe 3 Gete 2 /in in 2 Se 3中的极化诱导的反转对称性的破裂,确实会导致界面DM相互作用。强的自旋轨道耦合触发Fe 3 Gete 2 /in 2 Se 3异质结构的磁各向异性。Fe 3 Gete 2中的磁各向异性和DM相互作用可以通过2 SE 3中的铁电偏振良好控制。这项工作为基于范德华异质结构的自旋设备铺平了道路。
从1995年的第一个单一组合CDSE超级晶格开始(图2a),并以1999年的多层Sio 2超级晶格的发现达到顶点(图2B),无机纳米晶体超级晶格的多样性是通过使用良好的良好的良好的良好的方法,可欣赏使用的方法。[13–17]这些具有原子精度的上层建筑继续激励对新型超级晶格的研究。发现CDSE超晶格几乎十年后,多功能超晶格的发展受到平衡纳米级相互作用的困难,例如范德华力,例如范德华力,静电效应,空间排斥力,摩尔的骨骼二波尔相互作用以及氢键。[18]在2002年,Fe 2 O 3纳米晶体和PBSE量子点自组装成具有未经原始的高包装密度的高度有序的3D二元纳米晶体超晶格(图2C)。[15]从那时起,已经利用了15种超过15种类型的二元纳米晶体超级晶格,涵盖了广泛的材料,包括分号,金属和磁性构建块(图2E)。[16]此外,深入的研究证明,二元纳米晶体超级晶格的化学计量法主要由对稳定的纳米晶体的电荷指示,其熵,范德华瓦尔斯,固定剂,固定力和二极管力的贡献较小。在2003年,提出了包装模型来解释超晶格的结构构型并预测可能的布置(图2D)。[19]
由于其优异的光学、电子和物理特性以及更好的可控物理尺寸调整,它填补了这一空白。此外,二维/二维范德华异质结构的层状结构性质最近引起了广泛关注。它们具有可调电子带隙、光吸收、高效的电荷分离和传输、耦合效应和低量子约束等有趣特性。12,14 – 17 Janus TMDs 材料与传统 2D 材料不同,引起了人们的浓厚兴趣。Janus TMDs 材料具有不对称晶体结构、固有平面外极化和压电性等独特特性。 18 – 23 2D/2D 范德华异质结构耦合非常重要,它会产生各种有趣的效果 24,25 这是一种结合不同 2D 材料各种特性的有用方法 26 以促进光伏技术创新。 27 通过将两个单层堆叠在一起,可以根据此优势和可调特性构建 MXO/MoX 2 异质结构。 28