在E步骤中制作的还将蒙特卡洛错误引入了优化目标。 为了减轻这些问题,我们应用随机梯度上升,并且在每个M步骤中仅采取一个梯度步骤。 我们还应用了基于动量的优化器,例如Adam [9],以跨多个M步骤汇总梯度,以抑制Monte Carlo误差的效果。 我们在模拟数据集和现实数据集上评估了我们提出的算法。 我们将稳定方法与几种基线方法进行了比较,包括基于随机变异推断的最近开发的学习技术和首先执行状态估计然后应用监督学习的混合方法。 我们的主要结果表明,稳定的表现始终优于所有其他基线,并实现与直接从地面真相轨迹中学习的性能。 总而言之,我们做出以下贡献:在E步骤中制作的还将蒙特卡洛错误引入了优化目标。为了减轻这些问题,我们应用随机梯度上升,并且在每个M步骤中仅采取一个梯度步骤。我们还应用了基于动量的优化器,例如Adam [9],以跨多个M步骤汇总梯度,以抑制Monte Carlo误差的效果。我们在模拟数据集和现实数据集上评估了我们提出的算法。我们将稳定方法与几种基线方法进行了比较,包括基于随机变异推断的最近开发的学习技术和首先执行状态估计然后应用监督学习的混合方法。我们的主要结果表明,稳定的表现始终优于所有其他基线,并实现与直接从地面真相轨迹中学习的性能。总而言之,我们做出以下贡献:
图1。(a)10兆瓦安装能力的LCOE估算的高斯分布。(b)蒙特卡洛模拟中使用的LCOE分布,基于报告的平均波资源的LCOE估计[15],[18] - [20]。
现代 SMT 求解器(例如 Z3)提供用户可控制的策略,使求解器用户能够根据其独特的实例集定制求解策略,从而显著提高求解器针对其特定用例的性能。然而,这种策略定制方法提出了一个重大挑战:为 SMT 实例类手工制定优化策略对于求解器开发人员和用户来说仍然是一项复杂且艰巨的任务。在本文中,我们通过一种基于蒙特卡洛树搜索 (MCTS) 的新型方法解决了自动 SMT 策略合成问题。我们的方法将策略合成视为一个顺序决策过程,其搜索树对应于策略空间,并使用 MCTS 来导航这个巨大的搜索空间。使我们的方法能够识别有效策略同时保持低成本的关键创新是分层和分阶段 MCTS 搜索的思想。这些新颖的启发式方法允许更深入、更有效地探索策略空间,使我们能够合成比最先进 (SOTA) SMT 求解器中的默认策略更有效的策略。我们将我们的方法(称为 Z3alpha)作为 Z3 SMT 求解器的一部分来实现。通过对六种重要的 SMT 逻辑进行广泛的评估,Z3alpha 在大多数基准测试中表现出比 SOTA 综合工具 FastSMT、默认 Z3 求解器和 CVC5 求解器更优异的性能。值得注意的是,在具有挑战性的 QF BV 基准测试集上,Z3alpha 比 Z3 中的默认策略多解决 42.7% 的实例。
为了使这些研究更加系统,并真正评估了方法的性能,重要的是具有良好的基准,即当地MCMC确保很难采样的问题。在90年代初期,必须面对同样的问题,以评估寻找优化或满足性问题解决方案的本地搜索算法的性能[21]。在这种情况下,通过引入研究的随机实例的集合来解决生成良好基准的问题[21 - 24]。随后在数值和分析上都显示了这些随机优化/满足性问题需要在N中成倍缩放,以在某些参数空间的某些区域在足够低的温度下进行适当的采样[2]。因此,它们为采样算法提供了很好的基准。然而,最近将机器学习方法应用于加速抽样的尝试尚未考虑这些基准。在本文中,我们考虑了一个典型的难以样本的随机问题,即随机图的着色,我们表明所有提出的方法都无法解决。我们的结果证实,这类问题是抽样方法的真正挑战,甚至在智能机器学习的动作的帮助下。[20]中研究的模型可能属于此类。此外,我们讨论了一些实际问题,例如学习辅助模型时的模式崩溃,当目标概率分布具有多个峰值时,并且辅助模型仅学习其中一个(或一个子集)。
动态环境中的抽象运动计划是一项具有挑战性的机器人任务,需要避免碰撞和实时计算。最新的在线方法作为速度障碍(VO)保证安全的本地计划,而基于强化学习或图形离散化的全球计划方法在计算上效率低下或不可证明是碰撞的安全性。在本文中,我们将蒙特卡洛树搜索(MCT)与VO结合起来,以修剪不安全的动作(即相撞速度)。以这种方式,即使在非常大的动作空间(60个动作)中,我们可以进行极少的MCT模拟计划,比使用许多模拟的纯MCT获得更高的累积奖励和更低的计算时间。此外,由于与VO的动作修剪,我们的方法可以保证避免碰撞,而纯MCT则没有。在本文中铺平了在实际机器人和多代理分散运动计划上计划MCT计划的道路。
摘要:Monte Carlo(MC)是研究散射媒体中光子迁移的强大工具,但很耗时以解决反问题。为了加快MC模拟的速度,可以将缩放关系应用于现有的初始MC模拟,以生成具有不同光学属性的新数据集。我们命名了这种方法基于轨迹,因为它使用了初始MC模拟的检测到的光子轨迹的知识,这与基于较慢的光子方法相反,在这种方法中,新型MC模拟具有新的光学特性。我们研究了缩放关系的收敛性和适用性限制,这两者都与所考虑的轨迹样本也代表了新的光学特性有关。为了吸收吸收,缩放关系包含平滑收敛的兰伯特啤酒因子,而对于散射,它是两个快速分化因子的乘积,其比例很容易达到十个数量级。我们通过研究给定长度的轨迹中的散射事件数量来研究这种不稳定。我们根据记录的轨迹中的最小最大散射事件进行了散射缩放关系的收敛测试。我们还研究了MC模拟对光学性质的依赖性,这在反问题中最关键,发现散射衍生物归因于小泊松分布的散射事件分布的小偏差。本文也可以用作教程,有助于理解比例关系的物理学与其局限性的原因,并制定了应对它们的新策略。
摘要:微电网(µ g)的面积是一个非常快速增长且有前途的系统,用于克服功率屏障。本文研究了基于随机元启发式方法的电动汽车网格整合(EVGI)的微电网系统的影响。放缓全球气候变化的最大挑战之一是向可持续发展的过渡。与电动汽车集成的可再生能源(RES)被认为是解决可持续发展目标7(SDG7)和气候行动目标13(CAG13)所需的权力和环境问题的解决方案。可以通过使用车辆到网格(V2G)技术将电动汽车与实用程序网格和其他RES进行耦合来实现上述目标,以形成混合系统。超载是一个挑战,这是由于负载数量未知(EV的数量未知)。因此,这项研究有助于通过提出要解决的随机蒙特卡洛法(SMCM)来确定不确定性(到达和出发EVS)的系统影响。这项研究的主要目的是使用元启发式算法进行尺寸调整系统配置,并分析不确定的电动汽车数量对Rigoli-Libya中住宅电源分布的影响,以获得一种具有成本效益,可靠性,可靠和可再生系统的影响。改进的鹿角优化(IALO)算法是一种优化技术,用于确定考虑多个来源的混合系统的最佳配置数量,而基于规则的能源管理策略(RB-EMS)控制算法用于控制电力系统中电力的电源。已经考虑了对效应参数的灵敏度分析,以评估未来的预期影响。讨论了从大小,控制和灵敏度分析中获得的结果。
勒索软件攻击已成为一种主要的网络安全威胁,其越来越复杂的技术经常逃避传统的检测方法。提出了一个新颖的框架,该框架通过蒙特卡洛树搜索(MCT)的动态决策能力来协同深度学习模型的预测优势,从而为不断发展的勒索软件变体带来的挑战提供了全面的解决方案。通过严格的评估,混合动力框架在降低误报的同时表现出显着提高的检测准确性,表现优于常规机器学习模型。MCT的整合允许探索多个决策路径,从而实时增强了系统对新型威胁的适应性。此外,提出的模型还保持了计算效率,使其对于企业环境中的实时部署而言是可行的。结果证明了混合模型是现代网络安全中强大的防御机制的潜力,提供了一种可扩展有效的工具来减轻勒索软件威胁。
结果:模拟表明,使用标准的Indygo试验方案(光通量= 200 j cm 2在球囊壁上)在治疗结束时39%的GBM细胞在治疗结束时被杀死,并且最初的光敏浓度为5μmM.5μMM。 安全。增加P热敏化剂浓度产生的细胞杀伤最大增加,当将浓度加倍至10μm时,有61%的GBM细胞杀死了,并保持治疗时间并保持相同的能力。根据这些模拟,标准试验方案进行了合理的优化,并且在没有潜在危险的情况下,细胞杀死的改善难以实现。为了改善治疗结果,应将重点放在改善光敏剂上。
Monte Carlo simulations predict distinct real EEG patterns in individuals with high and low IQs Arturo Tozzi (corresponding author) Center for Nonlinear Science, Department of Physics, University of North Texas, Denton, Texas, USA 1155 Union Circle, #311427 Denton, TX 76203-5017 USA tozziarturo@libero.it ABSTRACT The neural mechanisms underlying individual differences in intelligence are神经科学的主要重点。我们研究了蒙特卡洛模拟在预测实际脑电图模式和识别智力高和低智力个人之间潜在的神经差异方面的有效性。EEG数据是从IQ分类的两组志愿者中收集的,即高IQ组和一个低IQ组。使用最大似然估计将单变量的正态分布拟合到每个EEG通道,然后根据估计参数生成合成数据集。统计分析在内,包括均方根误差(RMSE)计算评估了真实数据和模拟数据之间的比对。我们表明,蒙特卡洛模拟有效地复制了来自两个组的脑电图数据的统计特性,与实际的中心趋势,可变性和整体分布形状非常匹配。特定的脑电图通道,尤其是在额叶和颞两侧区域,两组之间表现出显着差异,指出了潜在的认知能力神经标记。此外,低IQ组表现出更高的可预测性和更一致的神经模式,这反映出较低的RMSE值和几个EEG通道之间的较小标准偏差。lu等。相反,高IQ组显示出更大的可变性和更大的RMSE值,反映了复杂的神经动力学,而复杂的神经动力学通过Monte Carlo Simulations不太可预测。我们的发现强调了蒙特卡洛模拟作为复制脑电图模式,识别认知差异并预测与智能水平相关的脑电图活动的强大工具的实用性。这些见解可以为有针对性认知增强的预测建模,神经认知研究,教育策略和临床干预提供信息。关键字:统计分析;奇怪的任务;合成数据集;脑电图通道。引言探索智力智能的神经机制一直是认知神经科学研究的主要重点。脑电图(EEG)提供了评估认知能力差异的独特见解,包括不同智能水平的个人之间的区别(Friedman等,2019)。具有高度分辨率,非侵入性脑电图评估了同步,复杂性和网络效率之间的相互作用(Van Dellen等,2015)。例如,较高的智商与减少的长距离脑电图信息流和增强的局部处理效率相关联,支持小世界模型(Thatcher等,2016)。额外区域的短脑段延误和增加的连贯性与较高的智力相关,强调了额叶同步的作用(Thatcher等,2005)。Microstate动力学的变化与液体智能及其在认知训练后的增强有关(Santarnecchi等,2017)。静止状态的脑电图研究进一步探索了与智能相关的差异,报告了更聪明的个体中alpha和beta频段中静态间的平衡(Jahidin等,2013)。此外,已经证明,智商与脑电图的能量有负相关,但与特定频率下的信息流强度呈正相关,这强调了效率在神经通信中的作用(Luo等,2021)。(2022)发现,流体智能较高的人会更灵活地分配注意力资源,尤其是在复杂的任务中,如Theta和Alpha EEG活动所反映的那样。在一起,这些发现强调了脑电图在评估智力机制中的实用性,从而揭示了神经效率,半球间协调和适应性资源分配的一致模式。相反,由于脑电图数据的固有可变性,高维度和对噪声的敏感性,对脑电图数据的分析提出了重大挑战(Hassani等,2015)。要应对这些挑战并增强我们建模和预测脑电图模式的能力,需要先进的统计和计算方法。蒙特卡洛模拟已在各种科学学科中广泛使用,为受可变性和不确定性影响的复杂系统建模提供了强大的框架(Metropolis和Ulam,1949; Rubinstein and Kroese,2016)。通过利用从观察到的数据得出的统计特性,蒙特卡洛模拟产生了可能反映现实世界行为的合成数据集(Salvadori等,2024; Jones and Fleming,2024)。一种蒙特卡洛方法可能特别适合脑电图数据,因为它允许研究人员探索和复制神经动力学,而无需大量的实验数据收集。蒙特卡洛方法已应用于神经科学中以模拟和分析