图2涉及蓝细菌原代代谢的调节实体和产物。绿色表明各个调节剂在相关途径中的激活作用,红色表示相关途径的抑制作用。缩写:2-og:2-oxoglutarate; 2-PG:2-磷酸甘油酸; 3-PG:3-磷酸甘油酸; AA:氨基酸; BCAA:分支链氨基酸; C-DI-AMP:环状二腺苷磷酸盐; CA:碳酸酐酶;营地:环状腺苷磷酸盐; CCM:CO 2浓缩机制; CM:细胞膜; E4P:4-磷酸红细胞; FAS:脂肪酸合成; GS-GOGAT:谷氨酰胺合成酶 - 谷氨酰胺 - 氧甲酸 - 氨基转移酶周期; PEP:磷酸烯醇丙酮酸; PS:光系统; pyr:丙酮酸; rubp:核糖1,5-双磷酸盐; TM:类囊体膜。
mg(SO 4)x 7 H 2 O(7.5 g/l库存解决方案)10.00 ml CaCl 2 x 2 H 2 O(3.6 g/l库存解决方案)10.00 ml na 3 -Citrate x 2 H 2 H 2 H 2 O(0.6 g/L库存解决方案)10.00 ml Na -Edta x 2 H 2 H 2 H 2 H 2 H 2 H 2 H 2 O(0.1 G/L cock soluts trace trace trace trace + trace Mix> 330> 330> 330> 200 ml Tres> 00 ML TRES> 200 ml TRES> 200 ml TRES> 200 ml TRES> 200 ml TRES> 200 ml TRES> 200 ml T
摘要在巴西东北部半干旱地区的富营养化饮用水储层中分析了浮游植物的物种组成和季节性的继承。研究基于在1年(1997年至1998年)的两次或每月抽样,在1个代表站进行了2个采样深度(底部附近0.5和5 m)。limnological参数(温度,pH,pH,氧气,电导率,光,溶解的无机营养素),以确定影响浮游植物组成的可能因素。我们确定了30个分类单元,这些分类单元在数值上由叶绿素科主导。然而,在丰度和生物量方面,蓝细菌以cylindros- permopsis raciborskii(Wolsz。Seaveayya et subba Raju。该物种可以代表生物量接近浮游植物总生物量的96-100%,其值在1998年4月至11月之间达到70 mg 1-I(新重量)。在调查中,盘齿状梭菌的细丝盘绕(平均97%),平均比例为终端杂细胞的12.3%。物种毒性是根据生物症分析确定的,并且在开花过程中揭示了神经毒素的存在。到1998年3月,氯酸菌浓度在表面水平上达到135 pg 1-l,诱导了舒适区深度的急剧下降。在高温,高pH值,低N/P比以及没有有效的捕食者的情况下观察到了有利的环境条件。尽管没有外部养分供应,但营养环境似乎在蓝细菌的开花中起作用。然而,1998年与1997年的厄尔尼诺后果有关的年度雨水不足和缺乏水分的续约似乎是负责养育性贫血状况和氰基分体盛开的主要因素。因此,全球气候变化会影响大陆水域中的浮游植物种群动态,如海洋生态系统中经常证明的那样。
识别和对细胞能量调节机制的操纵可能是提高光合生物生产率的策略。这项工作检验了以下假设:通过以ATP形式将能量储存或消散能量在能量管理中起作用。在蓝细菌合成细胞群Sp中产生了无法合成多磷酸盐的多磷酸激酶(PPK)敲除菌株。PCC 6803。在高碳条件下,这种突变菌株比野生型菌株表现出更高的ATP水平和更快的生长,并且在多种应力条件下具有生长缺陷。在将PPK缺失与乙烯形成酶异源表达结合的菌株中,观察到比野生型背景相比,观察到较高的乙烯生产率。这些结果支持多磷酸合成和降解作为能量调节机制的作用,并表明这种机制可能是生物培养设计中的有效靶标。
图2。a)顶部:在7天内3D打印网格模式内WT S. elongatus的生长。底部:5天大的水凝胶的图像,这些水凝胶包含印刷在磁盘,蜂窝和GRID_A几何形状上的WT细胞的图像。补充表S1中描述了这些不同模式的维度细节。b)未载水凝胶(I&II)的FESEM图像,以及含有WT链球菌细胞(III&IV)的水凝胶。S。Elongatus细胞以假绿色突出显示。c)叶绿素自动荧光的共聚焦显微镜图像和含有WT链球菌细胞的水凝胶的Sytox蓝色染色以及生长的0、5和7天。d)在卸载水凝胶的80μmol光子M -2 s -1的入射辐照度中的净光合作用的盒子图,用于固定的水凝胶和抗生素抗生素链球菌菌株[WT(SP r sm r gm r gm r)]。
建筑物和古迹通常是由微生物殖民的,这些微生物可能导致色彩变化以及美学和物理化学的损害。这种生物殖民化取决于材料和环境。为了更好地理解和将建筑物表面的微生物发育与气象参数相关联,已经使用在两个时期的巴黎地区私人居住区的壁上的原位仪器来测量绿色藻类和蓝细菌的浓度:春季和秋季冬季。还选择了不同的位置来评估位置(地平线或垂直)和情况(阴影与阳光微气候)的影响。结果表明,微生物的发展迅速响应降雨事件,但随着温度较低,相对湿度(RH)较高,冬季的反应更加强烈。蓝细菌对这种季节作用不太敏感,因为它们比绿藻更耐药性。基于所有数据,已经制定了不同的剂量反应函数,以将RH,雨水和温度与绿藻浓度相关联。通过特定的拟合参数来考虑微气候的影响。这种方法必须扩展到新的广告系列测量结果,但对于预测气候变化的影响可能非常有用。
(发行日期)2021-03-31(资源类型)书籍部分(版本)接受手稿(权利)©2021 Springer Nature Singapore Pte Ltd.
摘要蓝细菌是光合作用的原核生物,近年来因其潜在的健康益处而引起了人们的关注。蓝细菌的一种显着特性是它们的高抗氧化能力,这归因于各种有益特性。抗氧化剂在人体中至关重要,因为它们有助于清除会导致细胞损害并导致疾病的自由基。使用蓝细菌和其他微生物的食物发酵已有几个世纪以来一直是一种传统的实践,并且已被发现增强了食物的抗氧化能力。本评论的论文旨在探讨蓝细菌在解锁发酵食品和食品微生物的抗氧化潜力方面的潜力。同时讨论了蓝细菌衍生的抗氧化剂的作用机理以及食用含有蓝细菌的发酵食品的潜在健康益处。
蓝细菌通常称为蓝绿色藻类,是一组光合细菌,可以在湖泊,池塘和河流中传播,形成盛开。蓝细菌的开花通常被称为有害藻华(HAB),这是由于某些蓝细菌产生氰诺毒素的能力,对人类和动物造成了健康危害。1个腐烂的花朵也会导致水中溶解的氧气迅速耗尽,这可能导致鱼突然死亡。HAB在夏季和加拿大早秋季最多产,当时休闲用水也是最多的。加拿大卫生部已经建立了评估水质和管理娱乐淡水中蓝细菌风险的指南,2,并为一组氰毒素(MC)设定了指南限制。此限制(10 µg/L)旨在保护在游泳等活动期间因意外摄入水而暴露的最脆弱的人群(儿童)。