蓝细菌是最早在生态系统功能中起着至关重要的作用的生态系统的生物之一,包括C和N固定,营养循环和与高等植物和其他在全球规模上影响过程的生物体的养分循环和有益的相互作用。蓝细菌由于其动力和适应性而在工业,恢复和农业实践中也具有潜力。然而,蓝细菌生理和微生物学的最新发展表明,作为生态系统工程师的蓝细菌的基本知识存在差距。在其功能以及土壤特征,与其他生物(例如植物(例如植物)的相互作用)以及人类利益的代谢能力的相互作用中,需要进行更深入的研究。我们欢迎提交原始研究文章,建模,沟通,全面评论,评论或观点。感兴趣的主题包括但不限于对陆地蓝细菌生理学,生态学和基因组学以及它们在恢复,农业和工业中的使用。还鼓励对极端或研究的环境进行多样性研究。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年2月17日发布。 https://doi.org/10.1101/2025.02.17.638518 doi:Biorxiv Preprint
p-糖蛋白(P-gp)是ATP结合盒(ABC)转运蛋白家族的成员,在多药耐药性(MDR)在癌症治疗中起着至关重要的作用。p-gp积极地从癌细胞中泵送化学治疗药物,降低其细胞内浓度,从而降低其疗效。本综述探讨了P-gp对MDR贡献的机制,包括内在和获得的抗性。它还讨论了抑制P-gp的各种策略,例如阻断药物结合位点,干扰ATP水解以及改变细胞膜整体性。还检查了第四代P-gp抑制剂和其他新型抑制剂的潜力,以增强癌症疗法的有效性。理解和克服P-gp介导的MDR对于改善癌症患者的治疗结果至关重要。关键字
为了增强蓝细菌的生长元有关弹性菌的生长,本研究使用共培养进行了直接筛查氰基细菌生长细菌(CGPB)的直接筛查。分离出四个新型CGPB菌株并在系统发育上鉴定出来:Rhodococcus sp。AF2108,Ancylobacter sp。 GA1226,Xanthobacter sp。 af2111和Shewanella sp。 OR151。 与最有效的CGPB菌株Rhodococcus sp。 af2108,在单一培养物中,蓝细菌细胞的叶绿素含量增加了8.5倍。 流式细胞仪分析显示,与犀牛Sp的共培养中,弹性链球菌细胞的数量增加了3.9倍。 AF2108。 这些结果归因于正向散射和叶绿素荧光强度的增加。 新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。AF2108,Ancylobacter sp。GA1226,Xanthobacter sp。 af2111和Shewanella sp。 OR151。 与最有效的CGPB菌株Rhodococcus sp。 af2108,在单一培养物中,蓝细菌细胞的叶绿素含量增加了8.5倍。 流式细胞仪分析显示,与犀牛Sp的共培养中,弹性链球菌细胞的数量增加了3.9倍。 AF2108。 这些结果归因于正向散射和叶绿素荧光强度的增加。 新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。GA1226,Xanthobacter sp。af2111和Shewanella sp。OR151。 与最有效的CGPB菌株Rhodococcus sp。 af2108,在单一培养物中,蓝细菌细胞的叶绿素含量增加了8.5倍。 流式细胞仪分析显示,与犀牛Sp的共培养中,弹性链球菌细胞的数量增加了3.9倍。 AF2108。 这些结果归因于正向散射和叶绿素荧光强度的增加。 新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。OR151。与最有效的CGPB菌株Rhodococcus sp。af2108,在单一培养物中,蓝细菌细胞的叶绿素含量增加了8.5倍。流式细胞仪分析显示,与犀牛Sp的共培养中,弹性链球菌细胞的数量增加了3.9倍。AF2108。 这些结果归因于正向散射和叶绿素荧光强度的增加。 新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。AF2108。这些结果归因于正向散射和叶绿素荧光强度的增加。新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。
海洋蓝细菌是一类灭绝的光合细菌,可以追溯到350万年。最珍贵的海洋微生物是针对各种色素提取的。他们的有益的代谢产物的产生很丰富。颜料是用于赋予其他材料颜色的明亮物质。真正的色素构成了这些着色剂的大多数,它们也称为生物色素或生物色素。这些生物色素通常被用作固体和液体的混合物,因为它们不溶于水。颜料是由生物产生的,特定的光吸收方法赋予了它们的颜色。自然选择已在数百万年内完善其代谢产物,以对一系列生物靶标产生影响。食物,饲料,化妆品,药物,营养和水产养殖领域都广泛使用了海洋色素。这项研究的目的是评估许多海洋蓝细菌物种微囊藻,lyngbya limnetica,oscillatoria roai,uscillatoria acuminata和uscillatoria princes,它们引起了一些兴趣。这些物种是为了研究其生物色素的研究,例如叶绿素颜料,植物素,β-胡萝卜素和植酸酯。已经对所有生物色素估计进行了初步研究,包括β-胡萝卜素,类胡萝卜素结合,植物蛋白酶,植酸盐和叶绿素颜料的估计。在5.9%的情况下,振荡王子的叶绿素含量最大。微囊藻的类胡萝卜素量为1.7%和1.8%。振荡器和振荡王子的植物素含量分别更高,0.78%和0.85%。和lyngbya limnetica。微囊藻sp。表现出高达1.5%的β-胡萝卜素水平。
Anderson,J。C.(2017)。 对乙酰氨基酚,P-氨基苯酚和P-氨基苯甲酸的生物合成产生。 Behle,A.,Saake,P.,Germann,A。T.,Dienst,D。,&Axmann,I.M。(2020)。 比较剂量 - cy-细菌中诱导启动子的反应分析。 ACS合成生物学,9,843 - 855。 Berliner,A.J.,Hilzinger,J.M.,Abel,A.J.,McNulty,M.,Makrygiorgos,G.,Averesch,N.J.H.,Gupta,S.S.,S.S.,Benvenuti,A.,Caddell,D. Lipsky,I.,Mirkovic,M.,Meraz,J。,…A.P。(2020)。 朝着火星上的生物制造业。 天文学和太空科学的边界,8,1 - 20。 Blue,R。S.,Bayuse,T。M.,Daniels,V。R.,Wotring,V。E.,Suresh,R.,Mulcahy,R。A.,&Antonsen,E。L.(2019)。 为NASA勘探太空飞行提供药房:挑战和当前的不足。 NPJ微重力,5,14。Anderson,J。C.(2017)。对乙酰氨基酚,P-氨基苯酚和P-氨基苯甲酸的生物合成产生。Behle,A.,Saake,P.,Germann,A。T.,Dienst,D。,&Axmann,I.M。(2020)。比较剂量 - cy-细菌中诱导启动子的反应分析。ACS合成生物学,9,843 - 855。Berliner,A.J.,Hilzinger,J.M.,Abel,A.J.,McNulty,M.,Makrygiorgos,G.,Averesch,N.J.H.,Gupta,S.S.,S.S.,Benvenuti,A.,Caddell,D. Lipsky,I.,Mirkovic,M.,Meraz,J。,…A.P。(2020)。朝着火星上的生物制造业。天文学和太空科学的边界,8,1 - 20。Blue,R。S.,Bayuse,T。M.,Daniels,V。R.,Wotring,V。E.,Suresh,R.,Mulcahy,R。A.,&Antonsen,E。L.(2019)。为NASA勘探太空飞行提供药房:挑战和当前的不足。NPJ微重力,5,14。
[4] Gibson B, Wilson DJ, Feil E 等人。野生环境中细菌倍增时间的分布。Proc Biol Sci, 2018, 285: 20180789 [5] Yu J, Liberton M, Cliften PF 等人。Synechococcus elongatus UTEX 2973,一种利用光和二氧化碳进行生物合成的快速生长蓝藻底盘。Sci Rep, 2015, 5: 8132 [6] Paddon CJ, Westfall PJ, Pitera DJ 等人。强效抗疟药青蒿素的高水平半合成生产。Nature, 2013, 496: 528-32 [7] Lin MT, Occhialini A, Andralojc PJ 等人。一种更快的 Rubisco,具有提高作物光合作用的潜力。 Nature, 2014, 513: 547-50 [8] Bailey-Serres J, Parker JE, Ainsworth EA 等. 提高作物产量的遗传策略。Nature, 2019, 575: 109-18 [9] Gleizer S, Ben-Nissan R, Bar-On YM 等. 转化大肠杆菌从二氧化碳生成所有生物质碳。Cell, 2019, 179: 1255-63 [10] Chen FYH, Jung HW, Tsuei CY 等. 将大肠杆菌转化为仅靠甲醇生长的合成甲基营养菌。Cell, 2020, 182: 933-46 [11] Kaneko T, Sato S, Kotani H 等.单细胞蓝藻Synechocystis sp. 菌株 PCC6803 的基因组序列分析。II. 整个基因组的序列测定和潜在蛋白质编码区的分配。DNA Res,1996,3:109 [12] van Alphen P、Najafabadi HA、dos Santos FB 等人。通过确定其培养的局限性来提高 Synechocystis sp. PCC 6803 的光自养生长率。Biotechnol J,2018,13:e1700764 [13] Sheng J、Kim HW、Badalamenti JP 等人。温度变化对台式光生物反应器中 Synechocystis sp PCC6803 的生长率和脂质特性的影响。 Bioresour Technol, 2011, 102: 11218-25 [14] 张胜山, 郑胜南, 孙建华, 等. 通过便捷引入 AtpA-C252F 突变快速提高蓝藻细胞工厂的高光和高温耐受性。Front Microbiol, 2021, 12: 647164 [15] Ungerer J, Lin PC, Chen HY, 等. 调整光系统化学计量和电子转移蛋白是蓝藻 Synechococcus elongatus UTEX 2973 快速生长的关键。Mbio, 2018, 9: e02327-17 [16] Wlodarczyk A, Selao TT, Norling B, 等. 新发现的 Synechococcus sp. PCC 11901 是一种可高产生物量的强健蓝藻菌株。Commun Biol, 2020, 3: 215 [17] Jaiswal D, Sengupta A, Sohoni S 等人。从印度分离的一种强健、快速生长且可自然转化的蓝藻 Synechococcus elongatus PCC 11801 的基因组特征和生化特性。Sci Rep, 2018, 8: 16632 [18] Jaiswal D, Sengupta A, Sengupta S 等人。一种新型蓝藻 Synechococcus elongatus PCC 11802 与其邻居 PCC 11801 相比具有不同的基因组和代谢组学特征。Sci Rep, 2020, 10:
的gemma-group加泰罗尼亚大学EEBE化学工程系,C/Edward Maristany,10-14,巴塞罗那多尺度研究。乔迪·吉罗纳(Jordi Girona)1-3,西班牙西班牙
预计将在即将到来的12月举行的摘要船员任务。短期住宿后,希望永久存在能够实现大量的科学发现。这将需要为工作人员提供生命支持的消耗品,数量太大而无法从地球进口。这些消耗品的一部分可以在现场生产生物处理,但是不必进口原料。正在考虑的解决方案在于使用重18zotrophic,岩石 - 酸性蓝细菌作为主要生产者:喂养现场自然可用的材料,它们将提供其他生物所需的营养。这个概念最近已经取得了动力,但是由于缺乏贡献团队的一致性,尤其是共享模型有机体,进步会减慢进步。希望解决这个问题,我们介绍了为选择当前模型所做的工作。我们从怀旧家族的预选菌株开始。对Anabaena sp的基因组进行了测序。PCC 7938(唯一尚未可用的人)我们比较了菌株的基因组数据,以确定其相关性并提供对其生理学的见解。然后,我们评估并比较了相关特征:Chie ply,它们利用Martian Regolith营养素的能力,它们对高氯的耐药性(Regolith中存在的有毒化合物)以及作为中学生产者的原料(在这里是异养细菌和较高植物)。这导致选择了Anabaena sp。PCC 7938,我们建议作为模型蓝细菌,用于开发基于火星的Natu-Natu-lal资源。
