预计将在即将到来的12月举行的摘要船员任务。短期住宿后,希望永久存在能够实现大量的科学发现。这将需要为工作人员提供生命支持的消耗品,数量太大而无法从地球进口。这些消耗品的一部分可以在现场生产生物处理,但是不必进口原料。正在考虑的解决方案在于使用重18zotrophic,岩石 - 酸性蓝细菌作为主要生产者:喂养现场自然可用的材料,它们将提供其他生物所需的营养。这个概念最近已经取得了动力,但是由于缺乏贡献团队的一致性,尤其是共享模型有机体,进步会减慢进步。希望解决这个问题,我们介绍了为选择当前模型所做的工作。我们从怀旧家族的预选菌株开始。对Anabaena sp的基因组进行了测序。PCC 7938(唯一尚未可用的人)我们比较了菌株的基因组数据,以确定其相关性并提供对其生理学的见解。然后,我们评估并比较了相关特征:Chie ply,它们利用Martian Regolith营养素的能力,它们对高氯的耐药性(Regolith中存在的有毒化合物)以及作为中学生产者的原料(在这里是异养细菌和较高植物)。这导致选择了Anabaena sp。PCC 7938,我们建议作为模型蓝细菌,用于开发基于火星的Natu-Natu-lal资源。
E560。 18 A. A. R. Central和K. Halvorsen,当前。 Prococ。 尼用酸化学。 ,2020,82,e115。 19 M. E. E. Hogan,M。W。Roberson和R. H. Austin,Proc。 natl。 学院。 SCI。 ,1989,86,9273–9 20 A. A. A. Ceska,J。R。Sayers,G. 21 J.-W。来和H. Bermudez,化学。 公社。 ,2009,7036–7E560。18 A. A. R. Central和K. Halvorsen,当前。Prococ。尼用酸化学。,2020,82,e115。19 M. E. E. Hogan,M。W。Roberson和R. H. Austin,Proc。 natl。 学院。 SCI。 ,1989,86,9273–9 20 A. A. A. Ceska,J。R。Sayers,G. 21 J.-W。来和H. Bermudez,化学。 公社。 ,2009,7036–719 M. E. E. Hogan,M。W。Roberson和R. H. Austin,Proc。natl。学院。SCI。 ,1989,86,9273–9 20 A. A. A. Ceska,J。R。Sayers,G. 21 J.-W。来和H. Bermudez,化学。 公社。 ,2009,7036–7SCI。,1989,86,9273–920 A. A. A. Ceska,J。R。Sayers,G.21 J.-W。来和H. Bermudez,化学。 公社。 ,2009,7036–721 J.-W。来和H. Bermudez,化学。公社。,2009,7036–7
蓝绿色藻类或蓝细菌是微生物,对于水生环境必不可少,因为它们可以产生氧气并进行光合作用。蓝细菌被认为是蓝色经济中的潜在资产,该资产的重点是对海洋资源的可持续利用[1-3]。蓝细菌的种植提供了富含脂质生物燃料的生物量来源,有助于减少对化石燃料的依赖并减轻气候变化。他们被调查以生产生物能源。通过在营养周期中吸收和固定大气氮,蓝细菌可改善水质并促进水生健康。通过吸收污染物和重金属,它们的生物修复能力有助于改善环境。此外,蓝细菌还用作水产养殖中大虾和鱼类的可持续进料替代品。它们的生物活性化合物也有可能在生物技术和药物应用中使用,这些应用可能创造就业机会并保护海洋生物多样性。尽管有这些机会,但蓝细菌与蓝色经济的全面整合,需要仔细考虑诸如可伸缩性,有害藻华和环境影响评估等问题[4-6]。
1.9a,2.2b和2.1a)分别向甲状腺素,Nodosilinea和Microcoleus属。属于这些属的蓝细菌经常在土壤/生物群中发现(Couradeau等人2019; Mehda等。2021; Mühlsteinová等。2014; Radzi等。2019; Roncero-Ramos等。2019; Samolov等。2020),例如trichocoleus菌株在沙漠土壤中很常见(Mühlsteinová等。2014;张等。2016),微弹性被认为是国际化生物分类单元之一(M. chaginatus通常是生物库的主要成员)(Couradeau等人。2019; Mehda等。2021; Roncero-Ramos等。2019),以及在土壤/生物群中也发现了Nodosilinea属的代表,即荒漠和南极地区(Mehda等人。2021; Perkerson等。2011; Radzi等。2019)。丝状分离物2.1b属于绿色藻类klebsormidium,也
摘要:蓝细菌,也称为蓝绿色藻类,是光合细菌,在水生生态系统中起着至关重要的作用,并且容易受到温度变化的影响。因此,随着气候变化导致的全球温度升高,一些蓝细菌物种会在温暖的温度下繁衍生息,这将导致生长季节的花朵增加。Mike-3模型已校准为现有的(2022)条件,用于评估RCP 4.5方案在2050年对童话湖(安大略省的浅层城市湖)的影响。预计的模拟表明,在2050年,在童话湖中央盆地的中部,水温将高于20°C 2281小时,而2022年为2060小时。这种情况表明,仙女湖中心地区的蓝细菌盛开持续时间将增加10.7%。同样,在童话湖的北部地区,Mike-3模型结果表明,在2050年,高于20°C的表面温度持续时间将从1628 h增加到2275小时,从而导致在RCP 4.5场景条件下,在RCP 4.5场景条件下,表面温度增加了647小时。这种情况表明,在童话湖北部的蓝细菌盛开持续时间将增加39.7%。这些建模条件表明,当地表水温高于20°C时,将有明显的栖息地适合氰基菌的生长,这表明由于气候变化而导致的蓝细菌的可用生长时间大幅增加,这一切都转化为严重的气候变化引起的气候变化。
摘要:由于人为影响,有害的藻类和蓝细菌花朵在淡水系统中的频率和强度增加,例如在流域中的养分负荷以及天然水道的工程变化。有多种物理因素影响淡水系统中的条件,这有助于有害藻类和产生毒素的蓝细菌的最佳栖息地。越来越多的研究表明,气候变化应激源还会影响水体状况,这些条件有利于有害的藻类和蓝细菌,而不是其他浮游植物。这些生物的过度生长或“开花”增加了人类,伴侣动物,牲畜和野生动植物接触毒素的机会。随着水的温暖和降水模式随着时间的流逝而变化,预计暴露于这些花朵会增加。因此,重要的是,各州和部落制定监控和报告策略以及协调政府政策,以保护其管辖范围内的公民和生态系统。目前,为监测和报告有害藻类和蓝细菌开花所采取的政策和方法在各州之间差异很大,如果有任何部落有针对有害藻类开花的特定政策,则尚不确定。本文综合了对美国内陆淡水系统中藻类开花的研究。本综述研究了气候变化如何促进开花频率或严重程度的趋势,并概述了各州和部落可能用来监测,报告和响应有害藻类和蓝细菌的方法。
提取高分子量(HMW)DNA进行长读测序,几乎没有碎片和高纯度是从蓝细菌物种中获取的。在这里,我们描述了一种使用Promega的向导R○HMW DNA提取试剂盒从两个蓝细菌物种中获取高分子量DNA的修改方法。套件中使用的协议是“ 3.D。从革兰氏阳性和革兰氏阴性细菌中分离HMW DNA”方案。在协议中的关键步骤中,我们建议除去细胞碎片的挥之不去的残留物,例如蓝细菌物种的粘液层,以防止其粘在产生的DNA颗粒上。此自定义的修改是在步骤11和12之间进行的,并称为METIS(最大化提取,转移异丙醇步骤)。此步骤大大减少了剩余的粘液层,如果保留将粘贴在DNA上,并使DNA不适合敏感的下游下一代测序,例如PACBIO测序。该方案已用于组装来自蓝细菌的两个基因组(Sychococcussp。和微囊孢子虫),一个来自革兰氏阴性细菌,lacibacter。它还允许在不使用有毒化学物质(例如苯酚)的情况下快速提取HMW DNA,而无需购买额外的试剂。
固定氮的蓝细菌来自怀旧的阶层,能够与多种植物物种建立共生关系。它们是混杂的共生体,因为相同的蓝细菌菌株能够与不同植物物种形成共生生物生物固定关系。本综述将重点关注内生细菌和附生的不同类型的细菌 - 植物关联,并从结构观点提供见解,以及我们当前对共生串扰中涉及机制的理解。在所有这些共生中,植物的好处是明显的;它从氰基固定氮和其他生物活性化合物(例如植物激素,多糖,铁载体或维生素)中获得,从而提高了植物的生长和生产力。此外,越来越多地使用不同的蓝细菌物种作为生物固定剂,用于生物氮固定,以改善土壤的生育能力和作物生产,从而提供了一种环保,替代和可持续的方法,以降低对合成化肥的过度依赖合成化肥的过度依赖。
ivan senock buena vista rancheria jenna rinde加利福尼亚鱼类和野生动物局克里斯塔尔·戴维斯·菲斯·菲斯·弗拉德克(Kristal Davis Fadtke)加利福尼亚州鱼类和野生动物局阿曼达·马吉尔(Amanda Maguire) Water Resources Ted Flynn California Department of Water Resources Tiffany Brown California Department of Water Resources Zhenlin Zhang California Department of Water Resources Sherri Norris California Indian Environmental Alliance Dierdre Des Jardins California Water Research Dana Shultz Central Valley Regional Water Board Janis Cooke Central Valley Regional Water Board Meredith Howard Central Valley Regional Water Board Veronica Burell Contra Costa Environmental Health Lisamarie Windham-Myers三角洲首席科学家劳雷尔·拉尔森(Laurel Larsen Delta)首席科学家(前)伊娃·布什(Eva Bush Delta)管家委员会亨利·德比(Henry Debey)亨利·德贝(Henry Debey)公园克里斯汀·约阿布(Christine Joab
由于气候变化和富营养化,主要有毒的淡水蓝细菌的花朵正在加剧,并且很可能会定居河口,从而影响底栖生物和养殖养殖,重强调主要的生态,健康,健康,健康和经济风险。在自然环境中,微囊藻形成大型粘液菌落,会影响蓝细菌和嵌入细菌洞穴的发展。然而,盐度增加对微囊藻的天然菌落的命运知之甚少。在这项研究中,我们监测了一个微囊藻的命运,沿法国淡水盐梯度沿着鲜花的不同阶段沿着法国淡水盐梯度沿着微生物组的命运。我们证明了蓝细菌基因型组成的变化,在特定代谢产物(毒素和兼容溶质)的产生中以及响应盐度升高的异育细菌结构的变化。尤其是M.铜绿和Wesenbergii M.基于微囊蛋白基因丰度,蓝细菌在其河口转移期间变得更具毒性,但没有选择特定的微囊蛋白变体。沿连续体发生了兼容溶质的增加,海藻糖和甜菜碱积累。盐度大多是异养细菌群落,沿着连续体的丰富性和多样性增加。与粘液相关的相关分数中的核心微生物组高度丰富,表明微囊肿及其微生物组之间存在很强的相互作用,并且可能保护粘膜对渗透冲击的作用。这些结果强调了更好地确定微囊菌落与它们的微生物组之间的相互作用,这可能是其广泛成功并适应各种环境条件的关键。