最近的高通量计算搜索预测了许多新型的三元氮化物化合物为在未倍增的相位空间中提供了新的材料发现机会。然而,几乎没有任何预测和/或合成仅将过渡金属纳入新的三元氮化物中。在这里,我们报告了MNCON 2的合成,结构和性能,MNCON 2是一种仅包含过渡金属和N的新三元氮化物材料。我们发现,Crystalline MNCON 2可以在其竞争性的二进制物中稳定,并且在该系统的趋势中可以通过在狭窄的范围内控制该系统的趋势,以使其成为不型生长的趋势。我们发现,单相MNCON 2在阳离子隔离的岩石晶体结构中形成。X射线光电子光谱分析表明,MNCON 2通过各种氧化物和氢氧化物与表面上钴结合的氧气敏感。X射线吸收光谱用于验证Mn 3 +和Co 3 +阳离子是否存在于八面体的协调环境中,这与CON和MNN二元组的组合不同,并且与基于岩石基的晶体结构预测一致。磁性测量表明,MNCON 2在10 K以下具有倾斜的抗磁磁基态。我们提取θ= -49的Weiss温度。7 K,突出显示了MNCON 2中的抗磁相关性。
MAM 集团首席执行官 Luc Michiels 表示:“我们的特种薄膜具有独特的组合产品特性,可在夏季减少太阳热量,在冬季隔热,使其成为能源管理的高性能解决方案,也使我们公司成为建筑师、承包商和建筑业主的密切合作伙伴。我们正与 ORAFOL 一起创造机会,将我们高度发达的技术推向全球市场。” ORAFOL 通过收购专业薄膜制造商 MAM 集团的股份,将这项未来技术整合到公司中。继 2021 年收购美国初创公司 NUPRO LLC 之后,这项投资标志着 ORAFOL 作为创新保护膜开发商和制造商的又一个里程碑。 ORAFOL 集团董事长兼首席执行官 Holger Loclair 博士表示:“通过此次收购,我们为 ORAFOL 在奥拉宁堡及全球的可持续发展奠定了新的基石。同时,这一举措也凸显了我们作为一家欧洲高科技公司,将成为行业未来市场的领导者。在气候变化的背景下,持续使用高度发达的光谱选择性薄膜将有助于有效减少各个领域的二氧化碳排放。” 位于 10 号展厅的新生产综合体能够在奥拉宁堡生产优质的太阳能保护膜
上下文。薄膜和涂层广泛应用于各种技术应用,如微电子、封装或光学。它们在沉积过程中通常会产生高残余应力,有时压缩应力约为几 GPa。如此大的压缩应力可能导致屈曲结构的成核和生长,这通常会导致最初赋予此类薄膜/基材复合材料的功能特性的丧失。因此,我们研究的目的是通过确定相关参数来防止、限制或控制屈曲现象的发生,从而更好地理解屈曲现象。过去,我们的研究主要集中于基材的弹性和塑性的影响、特定起泡结构作为所考虑薄膜机械性能的函数的观察、施加在起泡结构上的外部压力问题、弹性理论框架在观察到塑性褶皱时理解屈曲的局限性、二维材料(如石墨烯)的起泡结构由于其最终厚度而存在争议等。我们现在想将注意力集中在薄膜/基材的粘附性能上,这控制着界面裂纹的扩展,并最终控制起泡结构的生长。最近的实验观察突出了在固定机械应力/载荷下起泡的增长,表明粘附性随时间发生显著变化。例如,图 1 显示了一个圆形水泡(Si 晶片上厚度为 60 nm 的 Au),其中有无数连续的塑性褶皱,这是其生长动力学的标志。
adámas纳米技术的基于DMSO的纳米木浆(获得专利)具有高电阻,可以在2D和3D底物上形成均匀的播种层,从而允许高密度,缺陷,无钻石膜的生长。
抽象的内在交换偏置被称为单向交换各向异性,它出现在名义上是单一组分的铁(Ferri-)磁系统中。在这项工作中,具有磁性和结构性特征,我们证明了固有的交换偏差是(Ni,Co,Fe,Fe)基于α-Al 2 O 3(0001)基的(Ni,Co,Fe)氧化物膜中的一种普遍现象,这是由于岩石间层间层由抗Fififerromagnetic refortient的岩石间层的出现,由抗ififermagnetic Refacial Refacial Interfacial Interfacial Interfacial互相结合。我们表明,在Ni X Co Y Fe 3 - X -Y O 4(111)/α -AL 2 O 3(0001)膜中,内在交换偏置和界面重建对CO浓度Y的依赖性一致,而Ni和Fe浓度似乎不太重要。这项工作建立了一个内在的交换偏见材料一家,具有很好的可调性,并强调了控制材料功能方面的接口工程策略。
由于其出色的物理,化学和电化学特性,热解碳已成为各种技术应用的有前途的材料[1]。热解碳可以通过在受控条件下在高温和惰性气氛中的受控条件下的聚合物碳前体进行热解。通过调整热解条件,碳原子的杂交以及衍生碳的物理化学特性可以量身定制。尽管一些研究人员试图以原子量规模研究石墨化过程,但全面的理解仍然难以捉摸。透射电子显微镜(TEM)非常适合研究纳米级热处理过程中聚合物薄膜的石墨化[2]。的确,TEM提供了原位分析能力的优势,这些功能可以揭示热解过程中热解碳的纳米结构。但是,聚合物薄膜样品的制备仍然是一个挑战。这项工作介绍了通过两光子聚合物化(2pp)3D打印技术的基于mems的TEM加热芯片(密集溶剂)上悬浮的聚合物薄膜结构的微结构[3]。我们还报告了原位研究的结果,用于追踪热解碳的石墨化。
需要具有适应特性的多孔层,例如,在传感器,执行器和其他具有低介电常数的功能层中,需要进行适应性。化学中,多孔层用于催化剂或过滤。由于多孔材料的内部表面积大,重点是能量转换应用,例如锂离子电池的超级电容器或创新阳极。硅是为此目的的有前途的材料。但是,需要多孔的Si矩阵来补偿充电过程中发生的机械应力和体积膨胀。
M. Vanmathi A,,A。PriyaA,M。S. Tahir A,Sahir A,M。S. Razakh a,M。M. Senthil Kumar B,*,R。Indrajit C,R。Indrajit C,V。Elango D,G。Senguttuvan E,R v. Mangalaraja f。泰米尔纳德邦,印度-600 048 B机械工程学院,Vellore技术研究所,钦奈,泰米尔纳德邦,泰米尔纳德邦,印度-600 127 c物理系印度纳杜(NADU),600 089 E物理学系,安娜大学蒂鲁奇拉帕利大学工程学院毒性。进一步的金属掺杂可改变电导率,电气和光学特性。在这项研究中,使用喷雾热解技术进行了SN掺杂TIO 2的沉积。通过使用Hall效应技术获得了电性能,并通过X射线衍射和EDAX扫描电子显微镜分析膜的结构特性。X射线衍射的结果表明,通过喷雾热解沉积的薄膜是多晶的多晶,在(002)场的方向上优先取向。SEM分析表现出通过喷雾热解沉积的薄膜的膜结构。使用HALL效应技术获得了电导率的结果。(2024年6月7日收到; 2024年9月26日接受)关键词:二氧化钛(TIO 2),X射线衍射,扫描电子显微镜(SEM),Hall效果1。今天的引言,众所周知,大多数半导体使用二氧化钛纳米颗粒[1]。TiO 2在传感器[2],抗菌剂[3],氢[4],照片催化剂[5]和水蒸发[6]中找到了其应用。tio 2以其良好的光学特性,廉价,无毒和化学稳定而闻名。
这是根据Creative Commons归因许可条款(https://creativecommons.org/licenses/4.0)的开放访问工作。请注意,重复使用,重新分配和复制尤其要求作者和来源被记住,并且单个图形可能需要特别法律规定。该许可受Beilstein档案术语和条件的约束:https://www.beilstein-archives.org/xiv/terms。这项工作的确定版本可以在https://doi.org/10.3762/bxiv.2024.61.v1