研究表明,二烯酮化合物具有肿瘤选择性抗癌活性,与 TP53 的突变状态无关。先前的研究表明,此类化合物引起的细胞死亡与泛素蛋白酶体系统 (UPS) 的抑制有关。在这里,我们通过展示二烯酮化合物 b-AP15 抑制长寿命蛋白质的蛋白酶体降解来扩展先前的研究结果。我们表明,接触 b-AP15 会导致伴侣 VCP/p97/Cdc48 和 BAG6 与蛋白酶体的结合增加。将 b-AP15 产生的基因表达谱与 siRNA 引起的基因表达谱进行比较,表明蛋白酶体相关去泛素酶 (DUB) USP14 的敲低与药物反应最密切相关。 USP14 是 b-AP15 的一个已验证靶标,我们表明 b-AP15 与酶泛素结合口袋中的两个半胱氨酸 Cys203 和 Cys257 共价结合。与此一致,删除 USP14 会导致对 b-AP15 的敏感性降低。然而,发现靶向 USP14 并不能完全解释观察到的蛋白酶体抑制。为了寻找其他靶标,我们利用全基因组 CRISPR/Cas9 文库筛选和蛋白质组整体溶解度改变 (PISA) 分别识别机制必需基因和 b-AP15 相互作用蛋白。删除编码线粒体蛋白的基因会降低对 b-AP15 的敏感性,这表明线粒体功能障碍与 b-AP15 诱导的细胞死亡有关。使用 PISA 确定了已知参与 II 期解毒的酶,例如醛酮还原酶和谷胱甘肽-S-转移酶,作为 b-AP15 靶标。不同的探索方法产生不同的结果这一发现可以用以下方式解释:
摘要 表型筛选鉴定出一种芳基磺酰胺化合物,对查加斯病的病原体克氏锥虫具有活性。全面的作用模式研究表明,这种化合物主要针对克氏锥虫蛋白酶体,结合在催化糜蛋白酶样活性的 b 4 和 b 5 亚基之间的界面上。蛋白酶体 b 5 亚基的突变与对化合物 1 的抗性有关,而这种突变亚基的过度表达也会降低对化合物 1 的敏感性。进一步通过基因工程和体外筛选的对已知结合在 b 4/b 5 界面的蛋白酶体抑制剂有抗性的克隆对化合物 1 具有交叉抗性。此外,还发现泛素化蛋白质在用化合物 1 处理的上鞭毛体中积聚。最后,热蛋白质组分析确定苹果酸酶是化合物 1 的次要靶点,尽管未发现抑制苹果酸酶可提高药效。这些研究确定了一种能够抑制克氏锥虫蛋白酶体的新型药效团,可用于发现抗恰加斯病药物。
记忆形成需要协调控制基因表达,蛋白质合成和泛素 - 蛋白酶体系统(UPS)介导的蛋白质降解。UPS的催化成分,26S蛋白酶体包含由两个19S调节帽的20S催化核心,以及在丝网上120(PRPT6-S120)的19S CAP调节子基RPT6的磷酸化已广泛与控制活性依赖性依赖性依赖性蛋白酶体活动有关。最近,还显示RPT6在记忆形成期间在海马中具有类似转录因子的作用的蛋白酶体外作用。然而,对于大脑中“ Free” RPT6的蛋白酶体无关函数,在记忆形成期间以及该转录控制功能是否需要S120的磷酸化。在这里,我们使用了RNA测序以及新型的遗传方法以及生化,分子和行为测定方法来检验以下假设:PRPT6-S120在内存形成过程中prpt6-S120的独立性独立于蛋白酶体来结合DNA并调节基因表达。rNA介导的siRNA介导的自由RPT6敲低后的序列显示,在恐惧状态下,男性大鼠的背侧海马中有46个基因靶标,其中RPT6参与转录激活和抑制。通过RISPR-DCAS9介导的RPT6在靶基因上的人工放置,我们发现单独的RPT6 DNA结合对于改变学习后改变基因表达可能很重要。此外,CRISPR-DCAS13介导的S120转化为RPT6上的甘氨酸表明,S120处的磷酸化是RPT6结合DNA并在记忆形成过程中正确调控转录的必要条件。一起,我们揭示了RPT6在控制记忆形成过程中控制基因转录中磷酸化的新功能。
先天或获得对小分子BRAF或MEK1/2抑制剂(BRAFI或MEKI)的抗性通常是通过维持或恢复ERK1/2激活的机制而产生的。这导致了抑制激酶催化活性(CATERKI)的一系列ERK1/2抑制剂(ERKI)的发展,或者还防止了MEK1/2通过MEK1/2激活ERK1/2的激活的PT-E-PY双磷酸化(双向力学或DMENISP或DMERKI)。在这里,我们表明八个不同的Erki(Caterki或dmerki)驱动ERK2的营业额为ERK2,这是最充实的ERK同工型,对ERK1的影响很小或没有影响。热稳定性测定表明,ERKI在体外不会破坏ERK2(或ERK1)的稳定,这表明ERK2离职是ERKI结合的一种细胞后果。ERK2周转率,这表明ERKI与ERK2的结合驱动ERK2转移。然而,MEKI预处理阻止ERK2 PT-E-PY磷酸化和与MEK1/2的解离,可防止ERK2的离职。ERKI的细胞处理驱动ERK2的多泛素化和蛋白酶体依赖性转移以及Cullin-Ring E3连接酶的药理学或遗传抑制可防止这一点。我们的结果表明,包括当前的临床候选者在内的ERKI充当“激酶降解器”,推动其主要靶标ERK2的蛋白酶体依赖性转移。这可能与ERK1/2的激酶非依赖性作用和ERKI的治疗使用有关。
泛素 - 蛋白酶体系统(UPS)可用于异常或冗余蛋白质的降解和转化。UPS调节细胞的增殖,分化和代谢,神经网络形成,自动噬菌体以及其他生理或病理过程[1]。UPS受到严格控制,系统通常由泛素(UB),26S蛋白酶体,去泛酶的酶(DUBS),泛素激活酶(E1),Ubiq ubiq uitin uitin-conjugating酶(E2)和ubiquitin ligiigasase(E1)(E1)(E1)(E1)(E1)(E1)(E2)(E2)(E3)(E3)。APC是一种巨大的多sub单位蛋白质复合物,至少13个亚基可以通过泛素化控制细胞周期的关键底物。APC将它们定位在26S蛋白酶体中,启动后期,并通过进一步的降解[3]导致有丝分裂戒断。两个结构同源的辅助亚基CDC20和CDC20同源物1(CDH1)通常被视为“ APC coacti vators”。CDC20和CDH1负责扎带底物并激活APC的泛素连接酶活性,形成了两种不同的E3泛素连接酶配合物,APC CDC20和APC CDH1 [4]。cdc20主要在分区和早期G1阶段起抑制作用,通过降解securin和有丝分裂周期来阻碍分裂
• 尽管有可用的治疗方法,但对于复发和难治性多发性骨髓瘤患者,仍然需要新的治疗选择,这些患者的既往治疗包括蛋白酶体抑制剂、免疫调节剂和抗 CD38 抗体。
胃癌仍然是最常见的最常见的恶性肿瘤,也是全世界缺乏有效药物和治疗靶标的癌症相关死亡率的第五个主要原因。积累的证据表明,由E1,E2和E3酶和蛋白酶体组成的UPS在GC肿瘤发生中起着重要作用。UPS的失衡会损害GC开发过程中蛋白质稳态网络。因此,调节这些酶和蛋白酶体可能是GC靶疗法的有前途的策略。此外,Protac是一种使用UPS降解靶蛋白的策略,是药物开发的新兴工具。到目前为止,越来越多的Protac药物进入癌症治疗的临床试验。在这里,我们将分析UPS中的异常表达酶,并总结可以在Protac中开发的E3酶,以便可以为UPS调节剂和Protac Technology的开发用于GC治疗。
肺癌是全球最常见的恶性肿瘤之一,死亡率最高,每年约有160万人死于肺癌,其中85%死于非小细胞肺癌(NSCLC)。目前,NSCLC的常规治疗方法包括放疗、化疗、靶向治疗和手术,但耐药性和肿瘤侵袭或转移常常导致治疗失败。泛素-蛋白酶体通路(UPP)在肿瘤的发生和发展中起着重要作用,上调或抑制参与UPP的蛋白质或酶可促进或抑制肿瘤的发生和发展。泛素特异性蛋白酶(USP)作为UPP的调控者,主要通过去泛素化抑制蛋白酶体对靶蛋白的降解,从而发挥致癌或抗癌作用。本文就USP在NSCLC发生发展中的作用以及相应的靶向药物、PROTAC和小分子抑制剂在NSCLC治疗中的潜力进行综述。
引入或加强两种蛋白质之间的复合形成具有调节大量生物学过程的潜力,从而提供了可药物靶向空间的主要增加。(P1)复合诱导剂或稳定剂包括分子胶质,这些胶水抑制了复合物中一种蛋白质的功能,以及不同的异性功能化合物,可介导靶蛋白的翻译后修饰的调节或通过蛋白酶体或Lysososes中的蛋白酶降解。蛋白水解靶向嵌合体(Protac)是异性功能的化合物,该化合物由通过连接器连接到另一个结合E3泛素连接酶的靶蛋白的配体组成。(p2)protac诱导的三元复合物形成导致蛋白酶体泛素化和随后降解靶蛋白。大多数Protac都基于Cereblon(CRBN)或Von Hippel-Lindau(VHL)E3 Gimase配体。(p3)
图1 E3泛素连接酶和SCF型E3连接酶复合物的结构域结构:A,常见的结构是E3泛素连接酶复合酶配合物,介导许多细胞蛋白的靶向降解。In targeting substrate proteins for degradation, ubiquitin is passed from an E1 ubiquitin-activating enzyme to an E2 ubiquitin-conjugating enzyme to the protein substrate, with the final step (ligating ubiquitin to the substrate) catalyzed by an E3 ubiquitin ligase.b,已知SCF复合物是E3连接酶,而SCF型E3连接酶中的每个复合酶都与一组衔接蛋白相互作用,这些衔接蛋白通过特定的蛋白质 - 蛋白质相互作用域募集不同的结合伴侣,例如WD40 repots,例如重复(LRR)(LRR)(LRR),并在protitate sisstrate for Protiate Degradation degradation。这个数字是由作者(N.K.J.)创建的使用网站https://app.biorender.com [校正于2021年4月27日,在第一次在线出版物之后:图2中的一个错字]