摘要:我们描述了一种生物电极系统,用于评估细胞色素P450 2E1(CYP2E1)对氯唑唑酮的电催化活性。使用人CYP2E1,细胞色素P450还原酶(CPR)和细胞色素b 5(Cyt B 5),使用了系统的一个电极将Baccosomes immotimbilize Baccosomes immotimbilize Baccosomes。第二个电极用于用平方波伏安法注册,通过其直接的电化学氧化来量化CYP2E1产生的6-羟基氯唑唑酮。Using this system, we determined the steady-state kinetic parameters of chlorzoxazone hydroxylation by CYP2E1 of Bactosomes immobilized on the electrode: the maximal reaction rate ( V max ) was 1.64 ± 0.08 min − 1 , and the Michaelis constant ( K M ) was 78 ± 9 µ M. We studied the electrochemical characteristics of immobilized Bactosomes and have揭示了从电极中的电子转移既出现到CPR的平均假体和CYP2E1和CYT B 5的血红素铁离子。此外,已经证明CPR具有激活CYP2E1电催化活性向卫生的能力,这可能是通过分子间电子从CPR的电化学还原形式转移到CYP2E1血红素铁离子。
Student¹,助理教授,校长1。摘要:医学设计,发现和钦佩的计算方法。一般而言,医学发现大约需要12次和比隆的资本时间。它包括创建新的动作,将靶向蛋白质靶向,分析分子贸易,估计结合强度和药品包裹。计算机支持的药物设计(CADD)具有成本效益,并且没有一些自然试验。结构接地医学设计(SBDD)和配体接地医学设计(LBDD)是计算机支持的医学设计(CADD)方法的两种类型。sbdd样式剖析了大分子靶标3维结构信息(通常是蛋白质或RNA),以识别至关重要的斑点和关系,这些斑点和关系对于它们的独立自然功能很重要。LBDD样式集中在已知的抗生素配体上,以建立其生理化学包裹与抗生素条件之间的关系,这些抗生素与抗生素条件相关的抗生素调节是一种结构 - 劳存关系(SAR),可用于优化已知药物或指导新药物与高级劳动的设计的信息。关键字:计算机辅助药物设计,Inimilico设计,配体,药物发现3.介绍:几个抗生素胶囊可用,机械使用的杏仁时间比其他最大胶囊的时间更长,人类与环绕的微型有机体对感染的斗争是正在进行的,并且可能正在进行中,并且可能是为了供您使用。为此做出贡献是抗生素耐药性的一致上推力,导致需要品牌打屁股的新抗生素(1,2).closer来设计最近的抗生素,计算机辅助药物布局(CADD)可以与湿行战略相结合,以阐明湿lab策略以阐明耐药的目标,以搜索新的目标,并搜索新的小说和新的小说。解决抗生素耐药性问题的重要机会是确定最近的抗生素目标,该目标构成了对细菌生存至关重要的新型机制。作为一个实例,研究人员的生物信息学策略在计算上显示了许多数据库,并认识到7种参与细菌代谢途径的酶,除了在麦膜上放置在膜上的15种非同顺型蛋白质外,在gram nice细菌中,葡萄球菌(SA),这表明它们是潜在的目的。这种发现也可能有助于克服这种细菌常见抗生素的抗性,例如甲氧西林,氟喹诺酮类和黄唑烷酮。如今,诊断为新型抗生素靶标的A的一个例子是蛋白质血红素氧酶,与细菌的血红素代谢有关,以吸引铁。已有效地应用了CADD技术,以发现铜绿假单胞菌和奈瑟氏菌脑膜化肽的细菌血红素氧酶的抑制剂,从而使血红素氧酶作为抗菌对象的潜在位置(4,5)。
致力于讨论基本研究主题和突破: SCD和Thalassemia Nicola Conran(巴西)炎症b。镰状细胞疾病Slimane Allali(法国)中的肥大细胞c。血红蛋白病Lucia de Francesci(意大利)d。坦桑尼亚佛罗伦萨乌里奥(坦桑尼亚)的镰状细胞疾病研究e。镰状细胞疾病所罗门·阿卡夸(Ghana)(加纳)的器官功能障碍中的血红素倍倍型轴的作用和机制
缩写:EBIS,红细胞岛; EMP,红细胞巨噬细胞蛋白; EPO,红细胞生成素; EPOR,促红细胞生成素受体; FPN1,铁蛋白1; HMOX-1,血红素加氧酶-1; HRG-1,血红素响应基因1; ICAM-4,细胞间粘附分子4; ICAM-4S,细胞间粘附分子4分泌; IGF1,胰岛素样生长因子; ITIM,免疫受体酪氨酸抑制基序; KLF1,类似Kruppel的因子1; MFG-E8,牛奶 - 脂肪 - 球蛋白E8; PBMC,外周血单核细胞; PS,磷脂酰丝氨酸; PSC,多能干细胞; RBC,红细胞; RPM,红色果肉巨噬细胞; SCD,镰状细胞疾病; SHP,SRC同源区2含域的磷酸酶; TRF,转铁蛋白; VCAM-1,血管细胞粘附蛋白1 *通讯作者在:坎皮纳斯大学,Unicamp,Campinas 13083-970,SP,巴西。电子邮件地址:renata.sesti@gmail.com(R。Sesti-Costa)。 https://doi.org/10.1016/j.htct.2022.07.002 2531-1379/2022Associaçãobrasileirade hemotologia,Shemoterapia e terapia e terapia celular。 由ElsevierEspaña,S.L.U。出版 这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。电子邮件地址:renata.sesti@gmail.com(R。Sesti-Costa)。https://doi.org/10.1016/j.htct.2022.07.002 2531-1379/2022Associaçãobrasileirade hemotologia,Shemoterapia e terapia e terapia celular。由ElsevierEspaña,S.L.U。出版这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
脑蛛网膜下腔出血(SAH-SBI)后的继发性脑损伤是导致颅内动脉瘤破裂后患者不良预后的重要原因。缺乏诊断生物标志物和新型药物靶标表示未满足的需求。先前的实验证据表明,脑脊液(CSF-HB)中无细胞的血红蛋白是SAH-SBI的病理生理驱动力。这项研究的目的是研究CSF-HB和SAH-SBI之间的临床和病理生理关联。我们前瞻性地招募了47例连续的患者,并在动脉瘤破裂后的14天内每天收集了CSF样品。有非常有力的证据表明CSF-HB和SAH-SBI之间存在正相关。SAH-SBI的CSF-HB的诊断准确性显着超过了已建立的方法(曲线下的面积:0.89 [0.85-0.92])。时间LC-MS/MS CSF蛋白质组学表明,伴有自适应巨噬细胞反应的红斑分解是动脉瘤破裂后CSF空间中发生的两个显性生物学过程。为了进一步研究CSF-HB和SAH-SBI之间的病理生理,我们探索了HB前体的血管收缩和脂质过氧化活性。这些实验表明,SAH-SBI患者的CSF-HB浓度阈值重叠的临界拐点重叠。选择性HB耗竭和解决HB效率的HAPTOGLOBIN或血红素舒适性血红素有效地减弱了患者CSF中CSF-HB的血管促进和脂质过氧化活性。共同,高CSF-HB水平与SAH-SBI之间的临床关联,潜在的病理生理基本原理以及抗果糖蛋白和血红蛋白在前视体实验中的有利作用将CSF-HB定位为CSF-HB作为一种非常有吸引力的生物标志物和潜在的药物靶标的CSF-HB。
在 MD 轨迹中,分子重新定向,使得噻吩环位于血红素环 C 上方(1a 中为环 B),并且甲氧基的极性氧原子指向溶剂(图 6c)。相反,使用 6Me 取代的底物(2j)的 MD 模拟显示苯并噻吩环深深嵌入酶口袋中并远离溶剂(图 6c),其构象与底物 1a 和 5-OMe 底物不同。通过实验,酶对这些底物的活性遵循 2f(5-OMe)> 1a> 2j(6-Me)的顺序(图 3a)。由于该趋势与 MD 模拟确定的相应 TS 中苯并噻吩环对溶剂的暴露程度相关,我们假设底物
结直肠癌 (CRC) 是全球第三大常见癌症,是医疗保健领域的重大挑战 [1]。有力证据支持筛查在降低 CRC 发病率和死亡率方面的有效性 [2]。尽管结肠镜检查是当前的筛查标准之一,但由于成本高、工作量大和患者依从性低(尤其是在资源有限的国家)而阻碍了其推广 [3-5]。粪便潜血检测作为一种非侵入性替代方法,存在某些缺点,特别是其对检测晚期腺瘤的灵敏度低(低至 7%)和对检测 CRC 的灵敏度中等(50% - 81%)[6, 7]。此外,在基于愈创木脂的粪便潜血检测中,由于在食物和上消化道血液中发现非人类血红素,因此假阳性率很高 [7]。
控制与铁吸收、释放和储存有关的蛋白质表达的系统。众所周知,IRP(铁调节蛋白)通过 IREBP(铁反应元件结合蛋白)与位于其 UTR(5' 非翻译重复序列)中的铁蛋白 mRNA IRE(铁反应元件)结合发挥其生理作用,其中一种可能的结果是激活 NFR2(核因子 [红细胞衍生 2] 样 2)。 NFR2 是一种转录因子,其靶标包括:(1) 参与 β 和 γ 珠蛋白基因转录的基因;(2) 编码两种基因的转录因子的基因,这两种基因又编码两种参与血红蛋白血红素生成的蛋白质:(a) ABCB6 (ATP 结合盒亚家族 B 成员 6)(将卟啉从细胞质运送到线粒体)和 (b) 亚铁螯合酶(将亚铁插入原卟啉 IX)[4,5]。
氧化自我 - 充电电池已经出现了对全天候电动设备供电的需求。自我充电的低效率一直是目前的关键挑战。在这里,通过将血红蛋白(HB)作为聚苯胺(PANI) - 锌电池系统中的正电极添加剂来实现一种更有效的自氧化自我 - 充电机制。血红素充当催化剂,通过调节O 2的电荷和自旋态来降低自氧化反应的能屏障。为了实现自我充电,吸附的O 2分子捕获了降低的(已放电状态)PANI的电子,从而导致锌离子的解吸和Pani的氧化以完成自动充电。50个自动充电/放电周期后,电池可以放电12分钟(0.5 C),而在没有HB的情况下几乎没有排放能力。这种生物学 - 受启发的电子调节策略可能会激发新的想法,以提高自我充电电池的性能。
生物催化剂赋予高区域和对映选择性酶特性,可以通过工程化蛋白质序列来调整工业应用。默克研究人员最近的工作解决了与-Ketoglutarate依赖性二氧酶(A -kGD)在制造量表上有关的挑战,包括较低的总周转次数(TTN),有氧反应条件,低稳定性,酶降低,酶灭活酶会因自我 - 羟基化和过度氧化的非氧化剂而灭绝。一个工程的-kGD用直接酶促羟基化取代了五个合成步骤,从而从1中使用1的1中产生手性中间体2,以高的映选择性和制备性产量(图2 a)[ *5]。与血红素依赖性的氧酶相比,A-kgd仅需要与-Ketogoglutarate组合铁,并且不需要复杂的共同因素或还原酶域的共表达。酶的高选择性还使它们能够针对特定的