lyfgenia最初在2023年获得FDA批准,是一种自体造血干细胞基因疗法,用于治疗12岁或以上患有镰状细胞疾病的患者和瓦索 - 闭塞病史(VOC)。输注Lyfgenia后,转导的CD34+造血干细胞(HSC)植入骨髓中并分化以产生含有生物活性βA-T87Q-环球蛋白的红细胞,这些细胞将与α-蛋白结合使用,与α-蛋白结合,以产生含有βA-T87Q-Globin的功能性HB(HB)。HBAT87Q具有相似的氧结合亲和力和氧血红蛋白解离曲线至野生型HBA,可降低细胞内和总血红蛋白S(HBS)水平,并旨在在空间上抑制HBS的聚合,从而限制了红细胞的镰刀。SCD是由β球蛋白基因中的遗传突变引起的,导致称为镰状血红蛋白(HBS)的异常血红蛋白。红细胞变得僵硬,会过早溶血导致贫血,并且无法将氧气转运到临界器官。患者因血管熟悉的危机而遭受严重的疼痛。镰状细胞疾病的第一线治疗是羟基脲。lyfgenia(Lovotibeglogene autotemcel)在满足以下条件时将考虑覆盖:
lyfgenia最初在2023年获得FDA批准,是一种自体造血干细胞基因疗法,用于治疗12岁或以上患有镰状细胞疾病的患者和血管闭塞病史(VOCS)。输注Lyfgenia后,转导的CD34+造血干细胞(HSC)植入骨髓中并分化以产生含有生物活性βA-T87Q-环球蛋白的红细胞,这些细胞将与α-蛋白结合使用,与α-蛋白结合,以产生含有βA-T87Q-Globin的功能性HB(HB)。HBAT87Q具有相似的氧结合亲和力和氧血红蛋白解离曲线至野生型HBA,可降低细胞内和总血红蛋白S(HBS)水平,并旨在在空间上抑制HBS的聚合,从而限制了红细胞的镰刀。SCD是由β球蛋白基因中的遗传突变引起的,导致称为镰状血红蛋白(HBS)的异常血红蛋白。红细胞变得僵硬,会过早溶血导致贫血,并且无法将氧气转运到临界器官。患者因血管熟悉的危机而遭受严重的疼痛。镰状细胞疾病的第一线治疗是羟基脲。lyfgenia(Lovotibeglogene autotemcel)在满足以下条件时将考虑覆盖:
lyfgenia最初在2023年获得FDA批准,是一种自体造血干细胞基因疗法,用于治疗12岁或以上患有镰状细胞疾病的患者和血管闭塞病史(VOCS)。输注Lyfgenia后,转导的CD34+造血干细胞(HSC)植入骨髓中并分化以产生含有生物活性βA-T87Q-环球蛋白的红细胞,这些细胞将与α-蛋白结合使用,与α-蛋白结合,以产生含有βA-T87Q-Globin的功能性HB(HB)。HBAT87Q具有相似的氧结合亲和力和氧血红蛋白解离曲线至野生型HBA,可降低细胞内和总血红蛋白S(HBS)水平,并旨在在空间上抑制HBS的聚合,从而限制了红细胞的镰刀。SCD是由β球蛋白基因中的遗传突变引起的,导致称为镰状血红蛋白(HBS)的异常血红蛋白。红细胞变得僵硬,会过早溶血导致贫血,并且无法将氧气转运到临界器官。患者因血管熟悉的危机而遭受严重的疼痛。镰状细胞疾病的第一线治疗是羟基脲。lyfgenia(Lovotibeglogene autotemcel)在满足以下条件时将考虑覆盖:
血红蛋白亚基β (HBB) 是一种编码β-珠蛋白指令的基因。β-珠蛋白在血红蛋白的生成中起着重要作用,血红蛋白使红细胞能够携带氧气进入血液。HBB 基因突变会导致多种遗传性血液疾病,特别是β-地中海贫血。β-地中海贫血根据严重程度可导致严重贫血和疲劳。已有研究尝试通过人类患者的慢病毒载体和小鼠模型上的 CRISPR/Cas9 编辑来治疗β-地中海贫血。然而,尚未在临床试验中使用 CRISPR/Cas9 编辑来纠正 HBB 基因。这篇简短的文献综述和研究提案旨在解决有关 HBB 基因的 CRISPR/Cas9 编辑和人类患者体内 β-地中海贫血的基因疗法治疗方面的知识空白。
在这种情况下,最相关的研究之一是TRICC试验,4一项涉及838例舒适患者的随机临床试验(RCT)。这项研究涵盖了多样化的爆炸,血红蛋白水平<9 g.dl 1在入院后72小时内。这项开创性的工作挑战了当时有效的自由输血逻辑,比较了限制性输血臂(血红蛋白<7 g.dl 1)与自由臂(血红蛋白<10 g.dl 1)。在限制组中,心肌梗塞和急性肺水肿的发病率在统计学上较低。这项研究得出的结论是,除了心血管疾病患者的亚组死亡率外,一种更加易于的输血策略至少与重症患者的自由策略一样有效,甚至不优于自由策略。
推荐的校准对照。血细胞分析包括 20 个参数:白细胞 (WBC)、淋巴细胞数 (LYM#)、中等细胞数 (MID#;MID 细胞包括与单核细胞、嗜酸性粒细胞、嗜碱性粒细胞、原始细胞和其他特定大小范围内的前体白细胞相关的较少出现和稀有细胞)、粒细胞数 (GRA#)、淋巴细胞百分比 (LYM%)、中等细胞百分比 (MID%)、粒细胞百分比 (GRA%)、红细胞 (RBC)、血红蛋白 (HGB)、平均红细胞血红蛋白浓度 (MCHC)、平均红细胞血红蛋白 (MCH)、平均红细胞体积 (MCV)、红细胞分布宽度-变异系数 (RDW - CV)、红细胞分布宽度-标准差 (RDW - SD)、血细胞比容 (HCT)、血小板 (PLT)、
• 应与患者和/或其护理人员共同作出决定后,停止使用降糖药。应制定并商定一项计划,详细说明停止使用的方法、所需的监测和目标血糖/糖化血红蛋白水平。 • 停止使用后,应在 3 个月后检查患者的糖化血红蛋白,以评估对血糖控制的影响。对于停止使用磺酰脲类药物,还需要增加血糖监测频率(有关监测的更多信息,请参阅第 2 页的表格)。 • 如果患者因停止使用药物而出现症状性高血糖症(例如口渴、脱水、跌倒、疲劳、尿频)或血糖水平/糖化血红蛋白超过个人目标,则应审查并优化当前治疗方案,然后再考虑恢复到以前的药物/剂量或开始使用新的降糖药。 • 在每个阶段,应在适当的情况下优化饮食和生活方式措施。
结果:共纳入510例患者,其中女性162例(31.76%),男性348例(68.24%)。女性患者平均年龄为69.68±12.29岁,男性患者平均年龄为66.14±12.34岁。女性患者平均糖尿病病程为10.22±9.64年,男性患者平均糖尿病病程为11.42±10.12年。263例Hb A1c <7患者平均Hb A1c值为6.05±0.55,247例Hb A1c ≥7患者平均Hb A1c值为9.08±1.91。当比较高和低 HbA1c 组的血清尿酸、肌酐和 eGFR 值(根据肾病饮食调整 (MDRD) 公式计算)时,发现血清尿酸水平之间存在统计学上显着差异 (p=0.002)。当分析高和低 HbA1c 组中尿酸和 eGFR 之间的相关性时,发现存在统计学上显着的强烈负相关性 (p<0.001 r= -0.640)。
患有II型糖尿病治疗条件治疗或对照(安慰剂)的人群患者,包括随后停止分配的治疗和救援药物使用的任何中断。可变/端点从基线糖化血红蛋白(HBA1C)变化。摘要度量在第26周的基线糖化血红蛋白(HBA1C)的平均变化。使用平均变化的差异进行组间比较。际事件(处理策略)
引言和目标:有一些HBA1C估计方法取决于糖化血红蛋白的不同物理,化学,免疫学特征。已经开发了许多分析技术,用于评估糖尿病(DM)中的HBA1C,包括免疫尿路二仪,硼酸盐亲和力色谱,酶试验和高性能液相色谱(HPLC)免疫测定。值得注意的是,不同的估计方法可能会产生不同的结果。本研究旨在进行和比较两种分析技术(特别是酶法方法和HPLC方法),以观察和分析同一样品中结果的任何变化。材料和方法:这是一项涉及100个EDTA样品的观察横截面研究。这项研究重点是使用两种不同的方法进行HBA1C分析:Atellica CH 930酶促血红蛋白A1C(HBA1C_E)来自西门子卫生仪和来自Bio-Rad Laboratories的阳离子交换HPLC HPLC。结果:两种方法之间观察到了强大的鲁棒相关性,这是Pearson系数为0.983的。平淡的Altman图显示了两种技术之间的高度一致性,其中95%的值落在±SD(标准偏差)之内,表明一致性很强。结论:这项研究确定,Atellica CH 930酶促血红蛋白A1C(HBA1C_E)和阳离子交换HPLC均为HBA1C产生了可比的结果。因此,两种分析技术均被认为适用于有效治疗糖尿病。关键词:糖尿病,糖化血红蛋白,高性能液相色谱,血红蛋白A1c通过酶法方法。印度医学生物化学杂志(2023):10.5005/jp-journals-10054-0223